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OUTLOOK

We present methods for Statistical Ineffective Fault Attacks that. . .

• Improve the effectiveness of SIFA on AES in the presence of jitter
• Defy clock randomization countermeasures

• Facilitate white-box analysis on AES
• Chosen plaintext attack significantly reduces the brute force space

• Apply analysis on 4 columns simultaneously
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FAULT ATTACKS
Workings

• With access to a device:
• Set plaintexts

• Observe ciphertexts

• Cause faulty outputs at specific locations

• Observe faulty outputs

• What can we do with this?
• Perform DFA [1]
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FAULT ATTACKS
Countermeasures

• Redundancy Countermeasure
• Fault detected == no ciphertext

• Infection
• Faults are amplified therefore 

ciphertext is not related to the key 
anymore

• Key recovery using DFA not 
possible
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FAULT ATTACKS
Attacking in the Presence of Countermeasures

• Ineffective Fault Attacks (IFA) by Clavier et al. [2]
• Exploits only correct ciphertexts

• Requires precise faults with known effect

• Statistical Ineffective Fault Attacks (SIFA) by Dobraunig et al. [3]

• Combines IFA with Statistical Fault Analysis (SFA) by Fuhr et al. [4]

• Exploits only correct ciphertexts

• Any fault, even if its effect is unknown

• Analysis takes long because of 232 brute force space
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SIFA ON AES
Acquisition phase

For multiple encryptions on AES…

• Intermediate bytes are random 
uniformly distributed

• Fault between last two MixColumns
operations

• Bias distribution of one or more 
intermediate bytes

• Works the same for ineffective faults
• The target still outputs the expected 

cipher text after the fault is injected

• Attacker gets "access to a subset of the 
ciphertexts"
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SIFA ON AES
Analysis phase

•Collect set of correct ciphertexts 𝒞1… 𝒞𝑛 from faulted encryptions

•Guess 32-bit sub key 𝒦10 and calculate state 𝒮𝑖 in round 9 (𝒦9 is not needed):

𝒮𝑖 = MC−1 ∘ SB−1 ∘ SR−1 ∘ 𝒞𝑖⊕𝒦10

• Wrong key candidate: 𝒮1 … 𝒮𝑛 is uniformly distributed

• Correct key candidate: 𝒮1 … 𝒮𝑛 is non-uniformly distributed

• Measure uniformity using a statistical test and rank all 232  possible sub keys

• The four key bytes of the highest ranking subkey are likely correct
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CONTRIBUTION 1: SIFA FROM INPUT SIDE 
Acquisition phase

For multiple encryptions of, uniformly 
distributed, random plaintexts with AES…

• Inject faults between the first two 
MixColumns operations

• Bias distribution of one or more 
intermediate bytes

• Collect the subset of plaintexts from 
ineffective faults
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CONTRIBUTION 1: SIFA FROM INPUT SIDE 
Analysis phase

• Collect set of plaintexts 𝒫1… 𝒫𝑛 from faulted encryptions corresponding to 
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CONTRIBUTION 1: SIFA FROM INPUT SIDE 
Propagation

• Each intermediate column corresponds to 4 input bytes

• No need repeat the analysis 4 times

• Can use Intel AES-NI for simultaneous calculation off all columns
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CONTRIBUTION 1: SIFA FROM INPUT SIDE 
Practical results

• Voltage glitch on STM32F407IG M4

• 8-bit "textbook" software AES 
(Section 4.1 of [5])

• After ≈ 1150 ineffective faults

• Voltage glitch on STM32F407IG M4

• 32-bit t-table software AES implementation
(Section 4.2 of [5])

• After ≈ 865 ineffective faults
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CONTRIBUTION 1: SIFA FROM INPUT SIDE 
Pros and Cons

• Known inputs, randomly distributed/ attacker-controlled inputs

• Attack needs to be repeated 3 times (+ 32-bit bruteforce) to retrieve the full key

• AES execution time can be non-constant
• Can be modeled as an Irwin-Hall distribution

• 𝑛 = number of rounds

• Mean: 𝜇 =
𝑛

2

• Variance: 𝜎2 =
𝑛

12

• Attacking in an earlier round → smaller error & more consistent fault model

• Great for blackbox analysis:
Performs better than regular SIFA in the presence of (clock) jitter
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CONTRIBUTION 2: CHOSEN PLAINTEXT SIFA
Acquisition phase

For multiple encryptions of, uniformly 
distributed, random plaintexts with AES…

• Special plaintexts are crafted where 
two of the four rows are set to a fixed 
value (e.g. zero)

• Inject faults between the first two 
MixColumns operations

• Bias distribution of one or more 
intermediate bytes

• Collect the subset of plaintexts from 
ineffective faults
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CONTRIBUTION 2: CHOSEN PLAINTEXT SIFA
Analysis phase

• Collect set of plaintexts 𝒫1…𝒫𝑛 from faulted encryptions corresponding to ineffective faults

• Guess 32-bit sub key 𝒦1 where the same two respective bytes are set to a fixed value as for the 
plaintext and calculate state 𝒮𝑖 in round 2 (𝒦2is not needed):

𝒮𝑖 = 𝒫𝑖⊕𝒦1 ∘ SB ∘ SR ∘ MC

• Wrong key candidate: 𝒮1…𝒮𝑛 is uniformly distributed

• Correct key candidate: 𝒮1…𝒮𝑛 is non-uniformly distributed

• Measure uniformity using a statistical test and rank all 216 possible sub keys

• The two non-fixed key bytes of the highest ranking subkey are likely correct

• Repeat the attack but with the opposite two rows set to zero to recover the other two key bytes
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CONTRIBUTION 2: CHOSEN PLAINTEXT SIFA
Practical results

• Voltage glitch on STM32F407IG M4

• 8-bit "textbook" software AES 
(Section 4.1 of [5])

• After ≈ 1085 ineffective faults

• Voltage glitch on STM32F407IG M4

• 32-bit t-table software AES implementation
(Section 4.2 of [5])

• After ≈ 1310 ineffective faults
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CONTRIBUTION 2: CHOSEN PLAINTEXT SIFA
Pros and Cons

• Attacker requires input control

• Brute force 16-bits at a time (instead of 32-bits)

• Attack needs to be repeated 6 times (+ 32-bit bruteforce) to retrieve the full key

• Same benefits and equal leakage to SIFA form input side

• Great for white-box analysis:
Reduces the brute force complexity (analysis time) by a factor of 32768
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SUMMARY

SIFA from the input side…

• Perform better than regular SIFA in the presence of clock jitter

• Known inputs (randomly distributed)/attacker-controlled inputs

• Allow for analysis on all 4 columns simultaneously → blackbox

Chosen Plaintext SIFA…

• Has the same benefits as SIFA from the input side

• Attacker controlled inputs

• Reduces the brute force complexity (analysis time) by a factor of 32768 →whitebox

17



Public

QUESTIONS OR REMARKS?

Bob Swinkels

Security Analyst at Riscure

swinkels@riscure.com
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SEI & CHI-SQUARED STATISTIC

SEI = ෍

𝑥∈𝒳

ෞ𝑝𝑘 𝑥 − 𝜃 𝑥
2

𝜒2 Ƹ𝑝, 𝜃 = 𝑁෍

𝑥∈𝒳

ෞ𝑝𝑘 𝑥 − 𝜃 𝑥
2

𝜃 𝑥
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GLITCH PARAMETERS

Input side SIFA Chosen Input SIFA

Parameters Textbook T-Table Textbook T-Table

Normal voltage 3.3 V 3.3 V 3.3 V 3.3 V

Glitch voltage 1.0 V 1.0 V 1.0 V 1.0 V

Glitch length 123 ns 123 ns 123 ns 123 ns

Glitch delay 32500 ns 5550 ns 32500 ns 5550 ns
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REDUNDANCY COUNTERMEASURE

• Fault detected == no ciphertext

• 2 identical faults needed for DFA
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