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In Short: Security Frameworks

« Atimeline of security frameworks
« Threshold implementations
* Non-interference

« Adversary models and challenges
* The probing model
* The random probing model
* The bounded query probing model
* The bounded computational probing model
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Boolean Masking

« Boolean masking!? splits a variable x € F, in multiple parts (x, ..., X;,—1)

— \n—-1
* X = Li=0 Xi

« Each part is randomly distributed

v

X
Paper cheat sheet
Random X, 4 ap
Number : - :
1. Goubin et al.: DES and differential power analysis (the

Generator “duplication” method)
2. Chari et al.: Towards sound approaches to counter-
act power-analysis attacks
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How not to Implement Masking

Masked AES
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How not to Implement Masking

calculation X X X X
resharing
integration
A B
q q
domain A domain B

Paper cheat sheet

1. Gross et al.: Domain-Oriented Masking: Compact
Masked Hardware Implementations with Arbitrary
Protection Order
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Threshold Implementations: Non-Completeness

 Glitches can make implementations insecure as shown by Mangard et al.

* Non-completeness by Nikova et al. requires that the combinatorial logic can
not use all shares
Example: Multiplier
zo = Fo(x0, X1, Y0, Y1) = X0Y0 D x0y1 D x1¥0
zy = F1(x1,%2,¥1,¥2) = 151 D x1y, D x4
zy = Fy(x0, X2, Y0, Y2) = X252 D x0y2 D x2¥0

Dependencies
Paper cheat sheet

. Mangard et al.: Successfully attacking masked
AES hardware implementation
. Nikova et al.: Threshold Imple-
mentations Against Side-Channel Attacks and Glitches
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Threshold Implementations: Uniformity

« For n Boolean shares, all sets of n — 1 shares are uniformly random
distributed

* For example, (xy,x, ) € F, needs
* X, IS a uniform random bit
* X, IS a uniform random bit
* (x9,x1) together are not uniform because x, + x; = x

* More context on the previous example
Zo = Fo(xo,%1,¥0,¥1) = XoYo @ x0y1 D x1¥0
7y = F1(x1, %2, 1, ¥2) = x1Y1 D %1y, D %201
Zy = Fy(x0,%2,Y0,¥2) = %22 @ x0Y2 D x2¥0
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Threshold Implementations: Uniformity

« A uniform shared input has to be mapped to a uniform shared output
 Your shared function has to be balanced/a permutation
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Uniformity

Threshold Implementations:

Balanced
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Threshold Implementations: Uniformity
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Higher-Order Attacks and Masking

« Afirst-order attack essentially views one masked function

 In a higher-order attack, the adversary views multiple functions
 |[n a univariate attack: only functions in one cycle
 In a multivariate attack: functions across multiple cycles

z >/( Jo j Yo ¢>/ 90
X1 /<E fl j Y1 /<E g1
{ fo Y2 . g2 ) 22
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Higher-Order Threshold Implementations

2006

 Side-channel and masking is from 1999

Threshold 2014

Implementations

Higher-Order
Threshold
Implementations

2015

A Note on
Higher-Order
Threshold

I Impl tati
Generalizes mplementations

Consolidating
Masking

Multivariate Schemes

Breaks Glitch-Resistant

Masking

Bilgin et al.: Higher-order threshold implementations Revisited
Reparaz: A Note on Higher-Order Threshold

Implementations

Reparaz et al.: Consolidating Masking Schemes

Moos et al.: Glitch-Resistant Masking Revisited

Paper cheat sheet
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Non-Interference (NI)

« A framework by Barthe et al. from 2015 providing compositional security
« Some different frameworks include PINI by Cassiers et al. and 10S by

Goudarzi et al. 0
* The circuit is now divided in gadgets i i —1 "
« Each gadget is proven (S)NI . | .

» Ensures security for the whole circuit | W e

Paper cheat sheet

. Barthe et al.: Strong non-interference and type-directed

higher-order masking

. Cassiers et al.: Trivially and efficiently composing
masked gadgets with probe isolating non-interference

. Goudarzi et al.: Probing security through input-output
separation and revisited quasilinear masking
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Composable Security

« Allows for higher-order secure circuits

 Allows for the easy verification of circuits
« MaskVerif by Barthe et al.
 [ronmask by Belaid et al.
« SILVER by Knichel et al.

* Allows for the automatization of masked circuits

* Via replacing AND/XORs using ISW-like approaches
. . . . high(_arorder masking in presence of physi_cal defaults_
® By tranSform|ng functlons dlrectly’ eg Knlchel et al . Belaid et al.: Ironmask: Versatile verification of masking

security

. Knichel et al.: SILVER - statistical independence and
leakage verification

. Knichel et al.: Generic Hardware Private
CircuitsTowards Automated Generation of Composable
Secure Gadgets

Paper cheat sheet

. Barthe et al.: maskVerif: Automated verification of
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The Other Side of Composable Security

« Simulation-based security always needs randomness
« Some works improve thist?

|
Real world | Simulated d
|

G (xo, ...,xn_l,x

S(xq, .n)

Paper cheat sheet
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The Randomness Cost

« An example AES masking from De Cnudde et al.
« Uses an unrolled PRINCE to generate randomness

First-Order Second-Order

d

Masking Randomness Masking R

Paper cheat sheet
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The Randomness Cost

* First-order low-randomness AES maskings*-?

Previous New

Masking Randomness Masking Randomness

Paper cheat sheet

1. Askeland et al.: Guarding the First Order: The Rise of
AES Maskings

2. Shahmirzadi et al.: Re-Consolidating First-Order Masking
Schemes Nullifying Fresh Randomness

Faculty of Engineering Science, ESAT, COSIC KU LEUVEN




The Randomness Cost

* First-order low-randomness AES maskings!:?
« Second-order low-randomness maskings of lightweight ciphers?

* A new framework for higher-order threshold implementations based on
CryptanaIyS|S4 Paper cheat sheet

Askeland et al.: Guarding the First Order: The Rise

« Based on a bounded number of probing queries ' of AES Maskings

. Shahmirzadi et al.: Re-Consolidating First-Order
Masking Schemes Nullifying Fresh Randomness

« Low-randomness second-order AES maskings®® | S e e O
with almost no Fresh Randomness

* Low-randomness second-order lightweight ciphers”8 [l e i

. Beyne et al.: A Low-Randomness Second-Order

« However, the maskings are handmade e
+ 1 Hardware Sharing of _the AES_ :
 No automatic verification or automatization e

Shahmirzadi et al.: Low-Latency and Low-

Of th e WhOIe Cl rcu |t : Randomness Second-Order Masked Cubic

Functions
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Recap

Higher-Order Masking

2015-2023
&) ) )
& & NS
2007-2015

Composable Security
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Theory vs. Practice

* There is a difference between side-channel on paper and in practice

* In theory, side-channel is too strong

* Region-probing security and horizontal attacks are important on paper but might not lead
to attacks in practice

* In the robust probing model, every glitch is possible

* In theory, side-channel is too weak
» Atwo-share first-order masking is less secure than a three-share first-order masking
« A probing secure masking can leak in practice

* There are a lot of practical technigues not properly studied yet

* Noise makers

 Dual rail methods

* Non-crypto RNG’s
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The Probing Model

« Made in 2003 by Ishai et al. to capture probing attacks?!

* The adversary gets to see a threshold number of intermediate variables
* There is no noise involved

* The number of probes determines the order of the attack
« Can be extended to capture physical effects such as glitches or transitions?

Tg }/ Jo ) Yo ->/[ 90 ]— 20
Tl . ( f1 J Y1 . [ 91 ]7 1 Paper cheat sheet
1. Ishai et al.: Private Circuits: Securing Hardware against
_ Probing Attacks
] 2. Faust et al.. Composable Masking Schemes in the

Presence of Physical Defaults and the Robust Probing
Model
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Applications of the Probing Model

» The first easy-to-use security model
 Allows for the making of higher-order masking schemes
 Allows for verification tools

* The standard model that is often extended to capture leakage effects
« Example: robust probing?!, software masking?3>

0 1 2 0 1 2 0 1 2 0 1 2

Domain A RO Xq RO Xq RO Xg RO | Fo(xg.x))
Domain B R1 x| R1 x| R1 x| Fi(x).x9)
Domain ¢ - py— Paper cheat sheet

Folxoxp) —> Foxoxp) —> Folxox1) . Faust et al.: Composable Masking Schemes in the
Domain T Fix1:x) Fixxa) Presence of Physical Defaults and the Robust Probing

Fy(x0:X)) Model
Align x, and x; at index Align x, and x, at index Align x, and x; at index Clear and update inputs . Zeitschner et al.: PROLEAD—SW - PrOblng'BaSEd

Software Leakage Detection for ARM Binaries
. Gaspoz et al.: Threshold Implementations in Software:
Micro-architectural Leakages in Algorithms

0 and compute F(x,.x,) 1 and compute F,(x,.x;) 2 and compute F,(x,.x,)
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The Random Probing Model

« Originally a virtual model by Duc et al. for a reduction to noisy leakage*

* The adversary probes every variable, but the probe can also return nothing
« When probing x,, you have an e-probability to get x,
* The location is not random, the location of each probe is known

8 8
= e}
Kﬂ
= =
_/ —
< <
= e
[ ]
fi
Q S
= o
N N
= e}

Paper cheat sheet
x2 . f2 J Y2 . g2 ]7 22 b

. Duc et al.: Unifying Leakage Models: from Probing

Attacks to Noisy Leakage
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Applications of the Random Probing Model

« Often cited because it captures horizontal attacks
« Unclear whether this is important in hardware

* The random probing model captures linear noise amplifications
« Scheme 1 with security 42 + 63 is first-order secure

« Scheme 2 with security 2¢? + 122 is also first-order secure, but twice as
secure against second-order attacks vs. scheme 1
 However, it is less secure against a third-order attack
« We can better compare masking methods

 Using fault countermeasures such as duplication lowers the security
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Challenges in the Random Probing Model

* Verify and compare the random probing security of maskings of different S-
boxes

* Verify different masking schemes
* See the effect of randomness reuse

 Verify and compare the security of different masking methods
* td + 1 shares vs. d + 1 shares
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The Bounded-Query Probing Model

 The same as the probing model
* The adversary only gets a limited number of queries (traces)
* The adversary still has unlimited computational power and memory
 (You can exchange the probing model by a random probing model or other)

Ob N

C ) A ko, k1, P
b+ $ ) b \ >

f(vh,... 00) %

Y

sorronb b
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Applications of the Bounded Query Model

* We can make use of cryptanalytic properties of maskings
« We can reduce randomness of maskings

AddRoundKey SubBytes Shift Rows MixColumns AddRoundKey SubBytes Shift Rows MixColumns
slols|e s|slsls 1,71, olo|e|e s|sls]s 1,1,
D | B |B|D S|SS5|S D(D|D|D S|S|S|S -

sle|ale|  [s|s|s|s| olelale|  [s|s|s]s|

D|D|D|D S|S|S|S D|D|D|D S|S|S|S

i1+ 1

SR, MC,

MC, SR, F
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Challenges in the Bounded Query Model

« The design of maskings with cryptanalytic properties

« We can re-use randomness between cipher calls
« We can investigate modes of operations where randomness Iis re-used

« We can investigate the security of maskings including the random number
generator

 Allowing non-cryptographic RNGs

and

§ rand 1
J-{RIHRZH{RSHRL}\J{RSHMWRvHRgMRQHRN}T
vand 2 1

and
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The Bounded Computational Probing Model

 The same as the probing model
* The adversary has a limited number of queries
* The adversary has limited computational power and memory

* Does not allow for security proofs

* Instead, we argue against typical attacks such as DPA against a single S-
box
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Challenges in the Computational Model

* Provide better bounds compared to the bounded query model
« Offset the importance of leakage In later rounds

* We can investigate the effect of re-keying primitives (e.g. Zyng UltraScale+1)
* We can compare the security of masking with the security of re-keying

* We can include extra diffusion in maskings to thwart key-retrieval attacks
 Etc....

Paper cheat sheet

1. Hettwer et al.: Side-Channel Analysis of the Xilinx Zynq

UltraScale+ Encryption Engine
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Conclusions

 Alot of challenging open problems
* In the random probing model
* In the bounded query model

« Some consensus about a computational model

« What about those under-studied practical techniques?
* Noise makers
 Dual rail methods
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Thank you!
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