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Motivation

Quantum computers are expected to be widely available in the next decade

Quantum attacks pose a threat to classical cryptography

Urgent need for quantum-resistant schemes
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Motivation

Lattice-based

• Dilithium
• FALCON
• Kyber
• FrodoKEM
• ...

Multivariate

• Rainbow
• UOV
• ...

Hash-based

• SPHINCS+
• ...

Code-based

• McEliece
• HQC
• BIKE
• ...

Supersingular

• SIKE
• ...
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Lattice-based key encapsulation mechanisms

• The security of lattice-based cryptography often relies on the Learning with Errors

problem (LWE)

• An LWE instance contains the secret vectors blinded with a noise vector (error)

• Usually, the noise vectors are taken from a Gaussian distribution, typically acquiring

many samples for a single run of the scheme
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Key encapsulation mechanisms

Client Server

KeyGen(pk,sk)
Gen(K)

c = Encapspk(K)

pk

cK ′=Decapssk(c)

Secure channel

Figure: Simplified Example of TLS Connection Establishment

T E C H N I S C H E U N I V E R S I TÄT B E R L I N 04-04-2023 7



FrodoKEM: Decapsulation (simplified)

Algorithm 1 FrodoKEM.Decaps( c1‖c2 and sk(s‖S))
1: B,B ′,C ← Frodo.Unpack(c1, c2, b)
2: Compute M ← C − B ′S
3: Compute µ′ ← Frodo.Decode(M)
4: Sample error matrix S ′, E ′, and E ′′

5: Compute B ′′ ← S ′A + E ′ (A is public)
6: Compute V ← S ′B + E ′′

7: Compute C ′ ← V+Frodo.Encode(µ′)
8: if B ′‖C = B ′′‖C ′ then
9: return (c1‖c2‖SHAKE(c1‖c2‖µ′)

10: else
11: return (c1‖c2‖SHAKE(c1‖c2‖s)
12: end if
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The CDT Gaussian sampler

Algorithm 2 Constant-time CDT sampling
Require: CDT ψ of length l , σ, τ
Ensure: Sampled value S

1: S ← 0
2: rnd ← [0,τσ) ∪ Z unifromly at random
3: sgn ← [0,1] ∪ Z unifromly at random
4: for (i = 0 ; i < l − 1; i ++) do
5: S +=(ψ[i ]− rnd) >> 15
6: end for
7: S ← ((−sgn) ∧ S) + sgn
8: return S

• The Gaussian sampler is based on a
cumulative distribution table CDT

• The CDT length depends on
deviation of the Gaussian distribution
σ and the Tailcut τ

• The implementation is constant-time

• A sign bit is assigned to the positive
output sample
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Side-channel analysis of the CDT Gaussian sampler

Figure: Overlapped power consumption measurement during the execution of the CDT sampler on
an 8-bit Harvard board equipped with an XMega micro-controller; the red color corresponds to the
sampling of the value 1, while the blue color corresponds to the sampling of the value 0
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Experiments vs. Real-world scenario

• 8-bit Harvard board are used in literature

• An XMega micro-controller which is especially common in educational embedded

applications

• In contrast, Cortex-M boards have been embedded in tens of billions of consumer

devices

• The frequency and/or the sampling rate have dramatic effect on the accuracy of the

power consumption traces

• Noise filtering tools
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Measurements on Cortex-M4

Figure: Overlapped Power consumption measurement during the execution of the CDT sampler on a
Cortex-M4 equipped with an STM32F4 microcontroller; the red color corresponds to the sample of
the value 0, while the blue color corresponds to the sampling of the value 1
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Measurements with different frequencies

Figure: Overlapped Power consumption measurement during the execution of the CDT sampler on a
32-bit Cortex board equipped with an STM32F4 micro-controller with different frequencies

T E C H N I S C H E U N I V E R S I TÄT B E R L I N 04-04-2023 14



Power consumption measurement
We write the power consumption at a specific point of time as the following:

P = Pop + Pdata + Pnoise + Pconst
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Why machine-learning side channel analysis?

• No assumptions on the introduced noise

• Automated selection of Points of Interest (POI)

• Efficient management of large traces/small profiling sets

• Resilience against the addition of useless (i.e. non-informative) leakage samples in the

traces
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Threat models in profiling attacks

• The classical threat model: A single-device-model

• Portability threat model: A cross-device attack (identical devices, homogeneous

devices, heterogeneous devices, etc.)

• Non-profiling supervised threat model: A differential deep learning analysis
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Machine-learning profiling attack on FrodoKEM: Profiling phase
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Machine-learning profiling attack on FrodoKEM: Profiling phase

• The list of these noisy measurements is split into training, validation, and a test set of

the Multi-Layer Perceptron (MLP) machine-learning classifier

• The attacker should train a classifier for each board

• Tuning the hyper-parameters of our machine-learning model is of particular importance

because it influences the accuracy

• We captured 20,000 power consumption traces. We set 18,000 of them for training

and testing and 2,000 for validation.
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Machine-learning profiling attack on FrodoKEM: Attack phase
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FrodoKEM: Decapsulation (simplified)
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Session key recovery
Having the values of S ′ and E ′′, the attacker computes the matrix V :

V = S ′B + E ′′
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Session key recovery
Having the values of S ′ and E ′′, the attacker computes the matrix V :

V = S ′B + E ′′

It is known from the decapsualtion algorithm that:

C ′ = V + Frodo.Encode(µ′)

Then, the attacker obtains the matrix Encode(µ′):

C ′ = S ′B + E ′′ + Frodo.Encode(µ′)

Hence, µ′ can be written as:

µ′ = Frodo.Decode(C ′ − S ′B − E ′′)
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Conclusion
• We investigated the feasibility of single trace

attacks against the CDT Gaussian sampler

• We proved that in real-world circumstances the

accuracy of the attack decreases

• We present a machine-learning classifier leveraging

the accuracy of the attack to 100%

• We apply our attack on FrodoKEM in real-world

circumstances and present a proof of concept of our

attack implementation
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Thank you for your attention
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