Lightweight Authenticated Encryption

Florian Mendel CSS Security Innovation

Authenticated encryption

> If your data is worth encrypting, you almost certainly don't want it to be modified!

> Confidentiality

- as provided by block cipher modes
- > Authenticity, integrity
 - as provided by message authentication codes
- > "It is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes."

– Kohno, Whiting, and Viega

Generic compositions

- Encrypt-and-MAC (E&M)
 - e.g. in SSL/TLS
 - security depends on E and MAC

- > Encrypt-then-MAC (EtM)
 - e.g. in SSH
 - security depends on E and MAC

- > MAC-then-Encrypt (MtE)
 - IPSec, ISO/IEC 19772:2009
 - provably secure

Standardized schemes

- > ISO/IEC specifies six AE modes for block ciphers
 - **EtM**: Encrypt-then-MAC
 - **CCM**: Counter with CBC-MAC
 - **EAX**: encrypt-then-authenticate-then-translate
 - GCM: Galois/Counter Mode
 - OCB: Offset Codebook Mode
 - SIV: Synthetic Initialization Vector mode

- > NIST Lightweight Cryptography Standardization (2019-2023)
 - <u>https://csrc.nist.gov/projects/lightweight-cryptography</u>
 - Inspired by the NIST AES and SHA-3 competition
 - Goal: Standardize lightweight authenticated encryption schemes that are suitable for use in constrained environments
- > Timeline:
 - 02/2019: 1st round submissions (56)
 - 08/2019: 2nd round candidates (32)
 - 03/2021: 3rd round candidates (10)
 - 02/2023: selection of winner

Ascon – Authenticated Encryption and Hashing

Joint Work with: Christoph Dobraunig, Maria Eichlseder, Martin Schläffer

- > Ascon was designed in 2014
- > First choice for lightweight AEAD in CAESAR portfolio
- > Extensive published cryptanalysis confirming its security margin
- > Additional modes for Hash, XOF, ...

Ascon Team

- > Christoph Dobraunig
- > Maria Eichlseder
- > Florian Mendel
- > Martin Schläffer

Ascon Family

- > Authenticated encryption (CAESAR, 2014)
 - Ascon-128
 - Ascon-128a
- > Hashing (NIST, 2019)
 - Ascon-Hash
 - Ascon-Xof (eXtendable output function)

- > Security
- > Efficiency
- > Simplicity
- Scalability

- > Online
- > Single pass
- > Lightweight
- > Side-Channel Robustness

Authenticated Encryption

- > Nonce-based AE scheme
- Sponge inspired (permutation-based)

	Ascon-128	Ascon-128a
Security	128 bits	128 bits
Rate (r)	64 bits	128 bits
Capacity (c)	256 bits	192 bits
State size (s)	320 bits	320 bits

Authenticated Encryption: Working Principle

- > The encryption process is split into four phases:
 - Initialization
 - Associated Data Processing
 - Plaintext Processing
 - Finalization

https://ascon.iaik.tugraz.at/

Permutation with {6, 8, 12} Rounds

> S-box layer

> Linear layer

$$x_0 = x_0 \oplus (x_0 \gg 19) \oplus (x_0 \gg 28)$$

$$x_1 = x_1 \oplus (x_1 \gg 61) \oplus (x_1 \gg 39)$$

$$x_2 = x_2 \oplus (x_2 \gg 1) \oplus (x_2 \gg 6)$$

$$x_3 = x_3 \oplus (x_3 \gg 10) \oplus (x_3 \gg 17)$$

$$x_4 = x_4 \oplus (x_4 \gg 7) \oplus (x_4 \gg 41)$$

https://ascon.iaik.tugraz.at/

Further Constructions: Hashing, XOF, ...

Ascon: Hashing / XOF

- > Hash Function / XOF (NIST)
- > Sponge construction

	Ascon-Hash	Ascon-Xof
Hash Size	256 bits	variable
Rate (r)	64 bits	64 bits
Capacity (c)	256 bits	256 bits
State size (s)	320 bits	320 bits

Hash / XOF: Working Principle

- Initialization >
- Message Processing (absorb) >

IV||0

Tag generation (squeeze) >

https://ascon.iaik.tugraz.at/

- > Initialization
- Message Processing (absorb)
- Tag generation (squeeze)

https://ascon.iaik.tugraz.at/

PRF-Short (extension)

- Initialization of Ascon-128 with different IV
- > Nonce replaced by message M (\leq 128 bits)
- Generates tag T (\leq 128 bits)

> Balanced design

- Small and efficient in hardware
- Efficient on 64 and 32 bit CPUs (bit-interleaving)

> Low overhead for short messages

- High key agility (no-key schedule)
- Low overhead for initialization/finalization

> Natural side-channel protection

- No table-lookups (constant time)
- Low-degree S-boxes (efficient masking)
- > Robustness against nonce-reuse, etc.

Implementation / Performance

Public Benchmarking Results for Ascon-128 and Ascon-128a

FPGA benchmarks for Ascon-128 and Ascon-128a

> FPGA benchmarks for AD+PT throughput in [Mbit/s] and area in [LUTs]

	Throughput	Area	Throughput / Area	
ASCON-128a	6297.6	2410	2.61	Vilian Anting 7
ASCON-128	3744.0	2126	1.76	
AES-GCM	2700.8	3270	0.83	
	Throughput	Area	Throughput / Area	
ASCON-128a	3031.0	4552	0.67	Intel Cyclone
ASCON-128	2157.0	3215	0.67	10 LP
AES-GCM	1548.3	8754	0.18	
	Throughput	Area	Throughput / Area	
ASCON-128a	2158.1	5909	0.37	Lattice ECDE
ASCON-128	1427.5	3764	0.38	
AES-GCM	1384.4	6740	0.21	

https://eprint.iacr.org/2020/1207

ASIC benchmarks for Ascon-128 and Ascon-128a

> ASIC benchmarks for AD+PT and throughput in [bits/cycle] and scaled area

	Throughput	Area	Throughput / Area
Ascon-128a	25.60	1.49	17.18
Ascon-128	16.00	1.56	10.25
AES-GCM	11.63	2.75	4.22

Embedded implementations (evaluated by LAS3)

> Time to process NIST testvectors in [µs] on embedded devices

	Uno	F1	ESP	F7	R5
Ascon-128a	1981	66.4	18.4	11.8	7.3
Ascon-128	2337	76.7	22.3	13.8	8.5
AES-GCM	-	332.8	67.2	35.8	23.7

> Code size in [bytes] on embedded devices

	Uno	F1	ESP	F 7	R5
Ascon-128a	2544	2252	1200	1240	1792
Ascon-128	2552	2157	1120	1180	1792
AES-GCM	-	9908	14832	9836	14272

https://lwc.las3.de/table.php

High-end benchmarking (w/o Ascon HW extensions)

> Performance in [cycles/byte]

	AMD Ryzen 9	ARM Cortex-A72
Ascon-128a	5.6	7.0
Ascon-128	8.1	10.5
AES-GCM	1.1*	30.6

*with AES-NI

Ascon hardware extensions/instructions

- > A Fast and Compact RISC-V Accelerator (for RV32, also ARM)
 - RI5CY ASCON-p with **4.7kGE**: speedup factor **50x**
 - Reuse 10 registers of CPU register file
 - https://eprint.iacr.org/2020/1083.pdf

- > ARM Custom Datapath Extension, RISC-V Bitmanip Extension, ...
 - 32-bit funnel shift instructions (RV32B: FSRI, ESP32: SRC)
 - 32-bit interleaving instructions (RV32B: ZIP/UNZIP, ARM CDE: CX3)
 - Fused AND/XOR, BIC/XOR instructions (ARM A64: BCAX, ARM CDE: CX3A)
 - SHA-2 like Sigma instructions

(ARM CDE: CX3DA)

Side-Channel Protected Implementations

Ascon: Designed with SCA in mind

Ascon: Designed with SCA in mind

- > Algebraic degree 2 of S-box
- > Limited damage if state is recovered
- > Levelled implementations
 - Higher protection order for Init/Final (key)
 - Lower protection order for AD/PT/CT processing (data)
- > Masking using Toffoli gate

> Masked DOM-Implementation of Ascon-128 (CHES2017)

Protection	Pipe	lined	Para	llel
Order	[kGE]	[Mbps]	[kGE]	[Mbps]
1	10.86	108	28.89	2246
2	16.19	108	53.00	1896
3	21.59	110	81.21	1903
4	27.13	71	118.27	1786

https://eprint.iacr.org/2017/103

 First and second-order protected hardware implementations are available at: <u>https://github.com/ascon/ascon-hardware-sca</u>

Levelled Implementations

- > Higher protection order for Init/Final (key)
- > Lower protection order for AD/PT/CT processing (data)

>

30

Copyright © Infineon Technologies AG 2023. All rights reserved

Fewer instructions

More efficient than masked AND gate

- Fewer registers
- Fewer randomness

Masking using Toffoli Gate

No fresh randomness needed during round computation >

- Randomness is not lost (invertible shared Toffoli gate) —
- Randomness of previous round can be reused

Benefits of invertible shared function >

- Uniform by design —
- SIFA: reduced attack surface

Further SCA Optimizations

- > Preliminary Goal: Achieve 1st-order protection with 2/3 shares in C/ASM*
 - Rotation offset between shares
 - Minimum number of ASM instructions (Toffoli gate)
 - Some register clears/NOPS needed
- > Performance in cycles/byte (green: evaluated)

impl/shares	armv6	C	C	2-1-2	2-1-2	2	2	3	3
flags		-02	-Os	-02	-Os	-02	-Os	-02	-Os
ARM1176JZF	58	70	85	88	100	260	343	524	703
STM32F415	59	84	90	90	98	320	378	650	669

> Implementations/results available at: <u>https://github.com/ascon/simpleserial-ascon</u>

* Our implementations should be considered as a starting point to generate device specific C/ASM implementations

ISAP – Authenticated Encryption

Joint Work with:

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Bart Mennink, Thomas Unterluggauer, Robert Primas

Motivation

- > Problem: side-channel attacks
- > Countermeasures: hiding, masking, TI, ...
- > Reduce overhead of countermeasures
 - Ascon, Xoodyak, ...
- > Can we do more?

- C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, and T. Unterluggauer: ISAP -Towards Side-Channel Secure Authenticated Encryption. FSE 2017
- G. Barwell, D. P. Martin, E. Oswald, and M. Stam: Authenticated Encryption in the Face of Protocol and Side Channel Leakage. ASIACRYPT 2017
- F. Berti, O. Pereira, T. Peters, and F.-X. Standaert: On Leakage-Resilient Authenticated Encryption with Decryption Leakages. FSE 2018

) ...

- > Robustness against DPA on algorithmic level for
 - Encryption
 - Decryption
- > Solely based on the sponge construction
 - Limits the attack surface for SCA

SPA and DPA

> Simple Power Analysis (SPA)

- Observe device processing the same or a few inputs
- Techniques directly interpreting measurements

> Differential Power Analysis (DPA)

- Observe device processing many different inputs
- Allows for the use of statistical techniques

Fresh Re-keying

> Basic Idea of fresh re-keying (tag and reader)

Fresh Re-keying

> Basic Idea of fresh re-keying (2 parties)

- > Encryption still fine
- > Decryption might be critical

How to Protect Decryption ?

- > Rely on implementation countermeasures
 - Costly
 - Makes re-keying for encryption kind of obsolete
- > Limit to one decryption
 - Keep track of the nonce
 - Re-encrypt data
 - Time consuming
 - Damaging

Multiple Decryption

- > Goal: Retain principles of fresh re-keying and allowing multiple decryption
 - DPA robustness in storage settings
 - DPA robustness in unidirectional/broadcast settings

Principle of Decryption

> Idea: "Bind" the session key to the data that is decrypted

- > Well-studied and analyzed
- > Allows to implement a wide range of primitives
- > No inverse building blocks (permutation) needed
- > No key schedule, key is injected once
- > Simple way to model side-channel-leakage

Authentication / Verification

Authentication / Verification

> Combine hash function with a MAC

Authentication / Verification

> Use suffix MAC instead of hash-then-MAC

Absorbing the key

- Modular multiplication
- > LPL and LWE
- > Sponges

Absorbing the key

- > Idea: Reduce rate to a minimum
- > Related to the classical GGM construction

https://ieeexplore.ieee.org/document/6855576

Encryption / Decryption

> Combine re-keying function and stream cipher

https://ieeexplore.ieee.org/document/6855576

- > Well-studied and analyzed
- > Allows to implement a wide range of primitives
- > No inverse building blocks (permutation) needed
- > No key schedule, key is injected once
- > Simple way to model side-channel-leakage

Side-Channel Leakage

> Modelling side-channel leakage in sponges

- C. Dobraunig and B. Mennink: Leakage Resilience of the Duplex Construction. ASIACRYPT 2019
- J.-P. Degabriele, C. Janson and P. Struck: Sponges Resist Leakage The Case of Authenticated Encryption. ASIACRYPT 2019
- C. Guo, O. Pereira, T. Peters and F.-X. Standaert: Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction. FSE 2020
- > C. Dobraunig and B. Mennink: Security of the Suffix Keyed Sponge. FSE 2020
- › C. Dobraunig and B. Mennink: Leakage Resilience of the ISAP Mode A Vulgarized Summary. NIST Lightweight Cryptography Workshop 2019

> ...

Instances

> Ascon

- ISAP-A-128A
- ISAP-A-128
- > Keccak-p[400]
 - ISAP-K-128A
 - ISAP-K-128

FPGA benchmarks for ISAP-A-128A and ISPA-K-128A

> FPGA benchmarks for AD+PT throughput in [Mbit/s] and area in [LUTs]

	Throughput	Area	Throughput / Area	
ISAP-A-128A	609.5	2157	0.28	Vilian Antin 7
ISAP-K-128A	829.6	3491	0.23	XIIINX ARIX-7
AES-GCM	2700.8	3270	0.83	
	Throughput	Area	Throughput / Area	
ISAP-A-128A	551.1	3026	0.18	Intel Cyclone
ISAP-K-128A	567.0	3767	0.15	10 LP
AES-GCM	1548.3	8754	0.18	
	Throughput	Area	Throughput / Area	
ISAP-A-128A	238.9	3623	0.07	Lattice ECDE
ISAP-K-128A	282.2	5703	0.05	
AES-GCM	1384.4	6740	0.21	

https://eprint.iacr.org/2020/1207

ASIC benchmarks for ISAP-A-128A and ISPA-K-128A

> ASIC benchmarks for AD+PT and throughput in [bits/cycle] and scaled area

	Throughput	Area	Throughput / Area
ISAP-A-128A	2.46	1.08	2.27
ISAP-K-128A	3.42	1.19	2.87
AES-GCM	11.63	2.75	4.22
AES-GCM	3.88	2.37	1.64

Features of ISAP

- > AEAD scheme following the NIST call
 - Provides increased robustness against DPA on algorithmic level
- > Enables several use-cases
 - Multiple decryption of stored data
 - Unidirectional/Broadcast communication
- ISAP is best suited for applications where performance is not critical, but robustness against side-channel attacks is needed, and code size and area matters

Summary

Lightweight Authenticated Encryption

- Security of 128 bits
- Efficient on constraint devices

> Security

- Well analysed/understood
- Large security margin

> Efficiency

- Small and fast on constraint devices in HW and SW
- Good performance on modern CPUs
- Natural side-channel protection

Part of your life. Part of tomorrow.