Improving Side-channel Leakage Assessment using
Pre-silicon Leakage Models

Dillibabu Shanmugam and Patrick Schaumont

14th International workshop of Constructive Side-Channel Analysis and Secure Design(COSADE)
TUM, Germany, April 3-4, 2023



Introduction

Evaluating power side-channel vulnerability of complexSoC is non-trivial

Machine learning techniques improved side-channel leakage assessment lot
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How to improve machine learning techniques further




Pre-and post-silicon leakage assessment
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Impact: Better threat model for evaluation




Side-channel Leakage Assessment flow (pre- and post-silicon)
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Traditional assessment of ASCON

Point of interest: X = (X3 A X4) A (255 A (X0 A X4) ) & X1)

1 1ui a5,0x30005

2 addi ab,ab,8

3 1i ad, 1

4 sw a4,0(ab) // GPIO trigger up

5 1bu a4, -52(s0) Related works Platform | Traces
6 1bu ab,-60(s0)

7 xor a5, a5, a4 // a4 <- X3°X4 Samwel et al Spartan 6 | 40k
8 andi a4 ,ab,255

9 1bu a3, -28(s0) Ramazanpour et al Artix-7 24k
10 1bu ab,-52(s0)

11 =xor ab,ab,a3 // a5 <- (X4°X0) Our work RISCV 2k
12 andi ab,ab, 255

13 not ab,ab // ab <- (255~ (X4-X0))

14 andi a3,ab,25

15 1bu ab,-36(s0)

16 and a5,a5,a3 // a5 <- (255~(X4~X0))&X1

17 andi ab,ab, 255

18 =xor ab,ab,ad // ab <- (X3°X4)"(255°(X4-X0))&X1

19 andi ab,ab, 255

20 sb ab,-52(s0) // store X4

21 1ui ab5,0x3000

22 addi ab,ab,8

23 sw zero ,0(ab) // GPID trigger down

Listing: Ascon S-box assembly code

Point of interest: Y = (X1 A (255 A ((X2 A X1) & X3))) A ((X0 ~X4) ~((255" X1) & (X27X1)))
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Traditional assessment of ASCON
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Key guess

Both simulation and measured has 640 samples

CPA:
 Simulated: 8 traces

e Measured : 2000 traces




Convolutional Neural Network(CNN)
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Figure: Network architecture

Network architecture and hyperparameters play an important role in a successful
adversarial threat model.

64 power samples and intermediate value(label) as input to the network. It extracts
features and has 256-class classifier.

Adopted ASCAD* network and optimized using random search for the specific target

Ihttps://github.com/ANSSI-FR/ASCAD




Transfer learning
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Impact: Reduce learning time and assessment effort

Transfer part of the pre-silicon threat model to the post-silicon threat model.

Pre-silicon traces are noiseless. Therefore, the threat model is more accurate when transferring the
model for post-silicon analysis.
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Summary of Results : ASCON
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1 2500050000

No.of Test traces

SLA of S-box X4 | Measured(CNN) o, |
Profiling| MTD | Accuracy =
Test case 1 45,000 |521 |80% T
Test case 2 100,000 | 490 | 82% 1
SLA of S-box X4 | Simulated Transfer(CNN+TL)
Profiling | MTD | Accuracy | Profiling | MTD | Accuracy
Test case_1 5,000 11 94% 19,000 |191 80%
Test case_2 20,000 2 94% 60,000 | 162 81%

* TL needs fewer traces to access the design. TL requires 1.97 and 2.87 times
fewer profile and test traces.
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Accuracy for simulated, transfer, and measured are 94%, 81%, and 82% respectively.
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Observation

Keybyte Rank
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TL converges 68 rank faster compares to measured CNN

TL models gain 5 to 7 bits in guessing entropy
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Summary of Results

Primitive | SLA Flow CPA (MTD) | Template CNN
Profiling | MTD | Profiling | MTD
(x 1,000) (x 1,000)
Simulated 8 9 2 9 2
ASCON | measured 2000 90 573 |90 500
Transfer - - - 19 176
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Performance comparison : Assessment complexity

The proposed TL method outperforms all other assessment

Assessment | Relative Assessment Gain on CPA

CPA 1

Template 3.4

CNN 4

TL 11.4

Assessment | Relative Assessment Loss over Simulation
CPA 250

Template 136

CNN 250

TL 88

Ratio of chosen assessment over CPA.
CNN+TL is less sensitive to distortions

from the measurement setup than any
other assessment

Increase in the number of traces for an
assessment from simulated traces to
measured traces.

CNN+TL shows less relative assessment loss
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Performance comparison: Time complexity

Primitive |SLAFlow |CPA Template CNN
#(x1,000) | LT AT #(x 1,000) | LT AT
ASCON Simulated |8 <1lm 9 10m 5m 9 50m 10m
Measured | 2000 <10m |90 30m 20m |90 6hr 20m
Transfer - - - 19 60m 15m

Performed all simulation and SLA experiments on Intel Xeon 6248 server.

Difference between simulated and measured trace capturing time:
* To simulatea trace requires 30sec, whereas measurement required 0.15sec. Measurement is 200
times faster

Cost of SLA on the collected traces:
 TL completes the task in 60+50 minutes as opposed to 6 hours by CNN
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Worcester Polytechnic Institute
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Conclusion

Transfer learning threat model evaluates the cryptographic design with 2.87 times
lesser number of traces compare to CNN

Side channel leakage assessment on Xoodyak also shows similar results

Pre-silicon side-channel leakage assessmentis a powerful tool for security validation
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Thank you for your attention

dshanmugam@wpi.edu

Further reading: "Improving Side-channel Leakage Assessment using Pre-silicon Leakage Models,"

D. Shanmugam, P. Schaumont, 14th International Workshop on Constructive Side-channel Analysis and Secure Design
(COSADE 2023), Munich, Germany, April 2023.
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