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Introduction
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Evaluating power side-channel vulnerability of complex SoC is non-trivial​

Machine learning techniques improved side-channel leakage assessment lot​

How to improve machine learning techniques further​



Pre-and post-silicon leakage assessment

Impact: Better threat model for evaluation
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Side-channel Leakage Assessment flow (pre- and post-silicon)
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Traditional assessment of ASCON 

Point of interest :  X = (X3 ^ X4) ^ (255 ^ (X0 ^ X4) ) & X1)
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Related works Platform Traces

Samwel et al Spartan 6 40k

Ramazanpour et al Artix-7 24k

Our work RISCV 2k

Listing: Ascon S-box assembly code

Point of interest :  Y = (X1 ^ (255 ^ ((X2 ^ X1) & X3)))  ^  ((X0 ^ X4)  ^ ((255^ X1) & (X2^X1)))



Traditional assessment of ASCON 
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Both simulation and measured has 640 samples

CPA:
• Simulated : 8 traces
• Measured : 2000 traces



Convolutional Neural Network(CNN)
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Network architecture and hyperparameters play an important role in a successful 
adversarial threat model.

64 power samples and intermediate value(label) as input to the network. It extracts 
features and has 256-class classifier.

Adopted ASCAD1 network and optimized using random search for the specific target

1https://github.com/ANSSI-FR/ASCAD

Figure: Network architecture



Transfer learning
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Impact: Reduce learning time and assessment effort

Transfer part of the pre-silicon threat model to the post-silicon threat model.

Pre-silicon traces are noiseless. Therefore, the threat model is more accurate when transferring the 
model for post-silicon analysis.

          

        

         

          

        

         

      

        

        

        

 

           



Summary of Results : ASCON
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SLA of S-box X4 Measured(CNN)

Profiling MTD Accuracy

Test case_1 45,000 521 80%

Test case_2 100,000 490 82%

SLA of S-box X4 Simulated Transfer(CNN+TL)

Profiling MTD Accuracy Profiling MTD Accuracy

Test case_1 5,000 11 94% 19,000 191 80%

Test case_2 20,000 2 94% 60,000 162 81%

• TL needs fewer traces to access the design. TL requires 1.97 and 2.87 times 
fewer profile and test traces.

Accuracy for simulated, transfer, and measured are 94%, 81%, and 82% respectively.



Observation
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• TL converges 68 rank faster compares to measured CNN

• TL models gain 5 to 7 bits in guessing entropy



Summary of Results
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Primitive SLA Flow CPA (MTD) Template CNN

Profiling
(x 1,000)

MTD Profiling
(x 1,000)

MTD

ASCON
Simulated 8 9 2 9 2

Measured 2000 90 573 90 500

Transfer - - - 19 176



Performance comparison : Assessment complexity

12

The proposed TL method outperforms all other assessment

Assessment Relative Assessment Gain on CPA

CPA 1

Template 3.4

CNN 4

TL 11.4

Assessment Relative Assessment Loss over Simulation

CPA 250

Template 136

CNN 250

TL 88

• Ratio of chosen assessment over CPA.

• CNN+TL is less sensitive to distortions 
from the measurement setup than any 
other assessment

• Increase in the number of traces for an 
assessment from simulated traces to 
measured traces.

• CNN+TL shows less relative assessment loss



Performance comparison: Time complexity
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Worcester Polytechnic Institute

Performed all simulation and SLA experiments on Intel Xeon 6248 server.

Difference between simulated and measured trace capturing time:
• To simulate a trace requires 30sec, whereas measurement required 0.15sec. Measurement is 200 

times faster

Cost of SLA on the collected traces:
• TL completes the task in 60+50 minutes as opposed to 6 hours by CNN
   

Primitive SLA Flow CPA Template CNN

# (x 1,000) LT AT #(x 1,000) LT AT

ASCON Simulated 8 <1m 9 10m 5m 9 50m 10m

Measured 2000 <10m 90 30m 20m 90 6hr 20m

Transfer - - - 19 60m 15m
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Conclusion

Transfer learning threat model evaluates the cryptographic design with 2.87 times 
lesser number of traces compare to CNN

Side channel leakage assessment on Xoodyak also shows similar results

Pre-silicon side-channel leakage assessment is a powerful tool for security validation
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Thank you for your attention

dshanmugam@wpi.edu

Further reading:  "Improving Side-channel Leakage Assessment using Pre-silicon Leakage Models,"
D. Shanmugam, P. Schaumont, 14th International Workshop on Constructive Side-channel Analysis and Secure Design 
(COSADE 2023), Munich, Germany, April 2023.

mailto:dshanmugam@wpi.edu
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