

RUHR-UNIVERSITÄT BOCHUM

Energy Consumption of Protected Cryptographic Hardware Cores

Aein Rezaei Shahmirzadi, Thorben Moos, Amir Moradi

Motivation

Low-power designs are crucial for battery-powered devices

- Direct impact on the longevity and overall efficiency
- Smaller batteries

Battery-powered devices

Examples in daily life:

- Laptops
- Smartphones
- Tablets
- Wearables
- IoT devices
- Transponders keys

Related Works

MIDORI [1] is the only block cipher optimized for low-energy consumption

Measuring the energy consumption in most of the publications is based on simulation [2,3]

No practical investigation on protected designs:

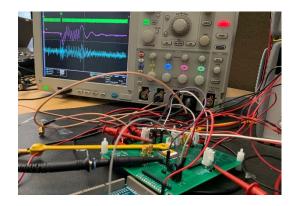
- Masking schemes
- Fault-attacks countermeasures

[1] Banik, Subhadeep, et al. "Midori: A block cipher for low energy." Advances in Cryptology–ASIACRYPT 2015:

[2] Caforio, Andrea, et al. "A deeper look at the energy consumption of lightweight block ciphers." 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021.

[3] Caforio, Andrea, Fatih Balli, and Subhadeep Banik. "Energy analysis of lightweight AEAD circuits." Cryptology and Network Security: 19th International Conference, CANS 2020.

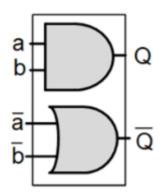
Masking

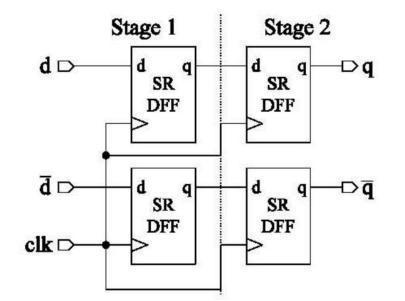

Problem: Side-Channel Analysis

- Timing
- Power Consumption
- Electromagnetic Radiation

Solution: Masking

- Randomizing sensitive data during the execution of the cipher
- Split sensitive intermediates into d + 1 shares
- Any d wires \rightarrow No information




Wave Dynamic Differential Logic

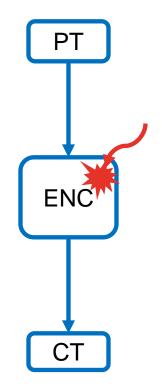
WDDL has been introduced in [1] to thwart SCA

- WDDL can be realized by existing standard cell libraries
- A WDDL gate consists of a parallel combination of two positive complementary gates

[1] Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: 2004 Design, Automation and Test in Europe Conference and Exposition (DATE 2004)

Fault Attacks

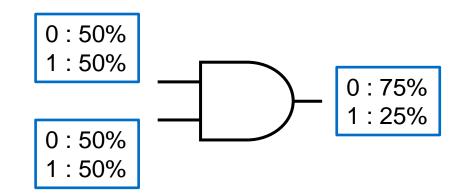
Physical access to the target device


- Set plaintext and observe ciphertext **Inject fault by:**
- Laser
- Electromagnetic
- Clock glitches
- Voltage glitches

Collect faulty or fault-free ciphertexts

Key recovery

- Sub-key guesses
- Determine correct key



Statistical Ineffective Fault Attacks

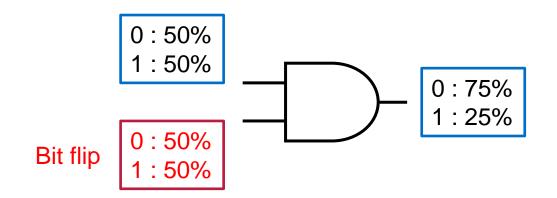
SIFA requires [1]:

- Only fault-free ciphertexts
- No knowledge about the location or effect of the fault
- Just a single fault

Intuition:

[1] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and R. Primas, "SIFA: exploiting ineffective fault inductions on symmetric cryptography," IACR TCHES, vol. 2018, no. 3, pp. 547–572, 2018.

Energy Consumption of Protected Cryptographic Hardware Cores



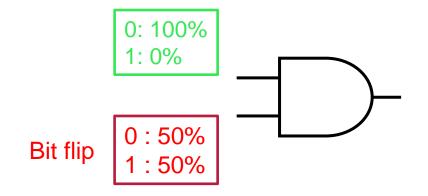
Statistical Ineffective Fault Attacks

SIFA requires [1]:

- Only fault-free ciphertexts
- No knowledge about the location or effect of the fault
- Just a single fault

Intuition:

[1] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and R. Primas, "SIFA: exploiting ineffective fault inductions on symmetric cryptography," IACR TCHES, vol. 2018, no. 3, pp. 547–572, 2018.



Statistical Ineffective Fault Attacks

SIFA requires [1]:

- Only fault-free ciphertexts
- No knowledge about the location or effect of the fault
- Just a single fault

Intuition: Consider fault-free ciphertexts

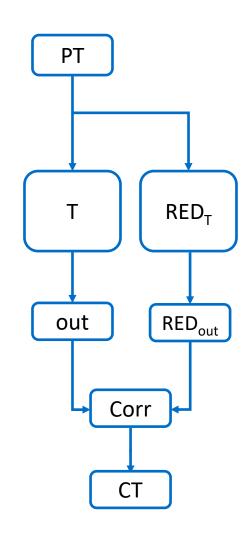
[1] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and R. Primas, "SIFA: exploiting ineffective fault inductions on symmetric cryptography," IACR TCHES, vol. 2018, no. 3, pp. 547–572, 2018.

RUHR-UNIVERSITÄT BOCHUM

Correction Based Countermeasures

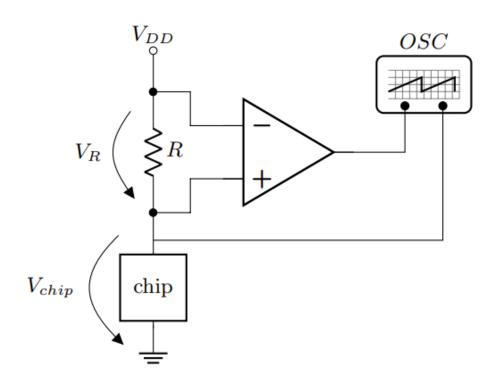
Code-based approach

Employing Error Correction Code


• Propagation of faults is considered

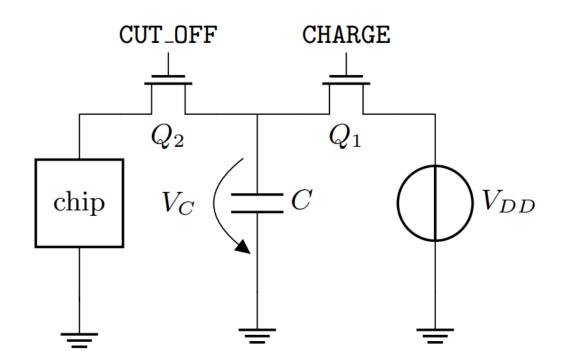
Covers every component of the design

- Data Path
- Control logic
- Consistency check module


Secure against SIFA

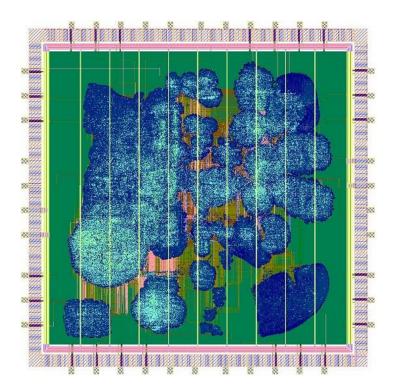
Measurement Methods

- P(t) = V(t)I(t)
- $E = \int_t P(t)dt = \int_t V(t)I(t)dt$



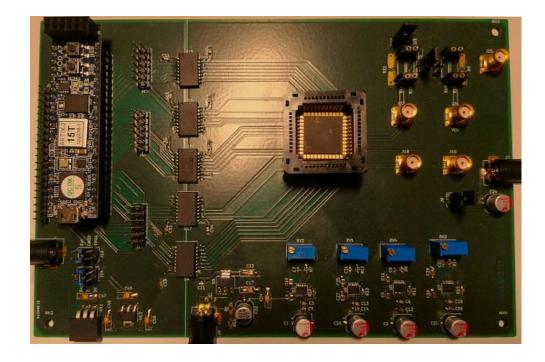
Measurement Methods

- $E = \frac{1}{2}CV^2$
- $\Delta E = E_{start} E_{end} = \frac{1}{2}C(V_{start}^2 V_{end}^2)$


Our Prototype Chip

Prototype ASIC in a 65nm technology

Several cryptographic cores all of which are clock gated


General control logic

Measurement Board

A Xilinx ARTIX-7 FPGA

The chip is clocked at 12 MHz

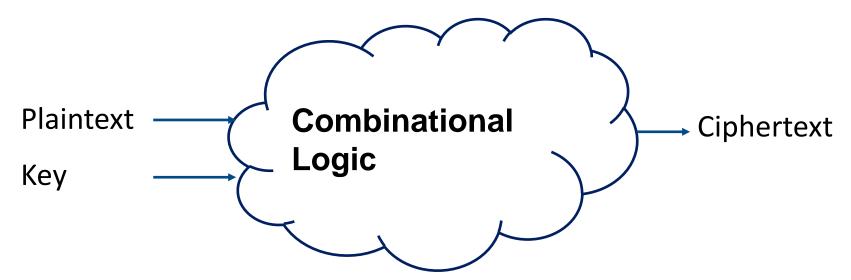
Energy consumption of the control logic can be considerable

We need to subtract the energy consumed by other components

To have an energy reference we follow exactly the same procedure of measuring the core energy consumption, but we select no core

Average over 10,000 measurements

Unrolled Implementations


High area overhead with low latency

High power consumption

• A large number of glitches

10,000 measurements

- Random plaintexts
- Fixed Key

Unrolled Implementations

Design	Block Size	Key Size	Energy/Enc	Energy/bit	
Design	[bit]	[bit]	[pJ]	[pJ]	
PRINCE	64	128	361.6	5.64	
PRINCEv2	64	128	366.4	5.72	
PRINCE+v2	64	128	373.5	5.84	
MIDORI	64	128	507.5	7.93	
MANTIS	64	128	471.6	7.37	
$\mathtt{QARMA}_7 extsf{-}64 extsf{-}\sigma_0$	64	128	572.1	8.94	
$QARMA_7-64-\sigma_1$	64	128	593.6	9.27	
$QARMA_7-64-\sigma_2$	64	128	655.8	10.25	
Orthros	128	128	966.4	7.54	
SPEEDY-5-192 ENC	192	192	598.4	3.12	
SPEEDY-6-192 ENC	192	192	792.0	4.12	
SPEEDY-7-192 ENC	192	192	916.2	4.77	
SPEEDY-5-192 DEC	192	192	1431.6	7.46	
SPEEDY-6-192 DEC	192	192	1910.3	9.95	
SPEEDY-7-192 DEC	192	192	2552.1	13.3	
GIMLI	384	384	811.1	2.11	

Energy Consumption of Protected Cryptographic Hardware Cores

Round-Based Implementations

AES has better energy efficiency than CRAFT

The WDDL design consumes roughly 6 times more energy

Design	Block Size [bit]	Key Size [bit]	Latency [cycles]	Energy/cycle [pJ]	Energy/Enc [pJ]	Energy/bit [pJ]
AES	128	128	11	3.53	38.9	0.30
CRAFT	64	128	32	2.26	72.5	1.13
CRAFT WDDL	64	128	64	7.32	468.4	7.32

First-Order SCA-Secure Implementations

Design	#Block	#Key	Latency	$\#P.^1$	Rand.	$En./Enc^2$	$En./P.^3$	$ En./bit^4 $
	[bit]	[bit]	[cycles]		[bit/cycle]	[pJ]	[pJ]	[pJ]
$ m CRAFTTI^5$	64	128	64	2	0	867.8	433.9	6.8
CRAFT CMS	64	128	128	4	0	2209.3	552.3	8.6
CRAFT NF	64	128	64	2	0	763.3	381.6	6.0
${\tt CRAFTTI}$ ${\tt WDDL}^5$	64	128	128	2	0	4748.1	2374.1	37.1
CRAFT CMS WDDL	64	128	256	4	0	12029.0	3007.3	47.0
CRAFT NF WDDL	64	128	128	2	0	5453.3	2727	42.6
SKINNY HPC2	64	64	160	5	64	6226.8	1245.4	19.5
SKINNY HPC3	64	64	96	3	128	2596.6	865.5	13.5
SKINNY GHPC	64	64	96	3	64	4654.6	1551.6	24.2
\texttt{SKINNY} $\texttt{GHPC}_{\texttt{LL}}$	64	64	64	2	1024	1439.7	1439.7	22.5
SKINNY COMAR	64	64	544	17	6	54487.8	3205.2	50.1
${\tt PRESENTTI}^5$	64	128	64	2	0	1195.7	597.9	9.3
PRESENT NF	64	128	656	1	0	4460.9	4460.9	69.7
AES	128	128	216	1	8	8961.7	8961.7	70.0
KECCAK NF	200	-	72	3	0	1995.3	665.1	10.0

¹ The number of plaintexts that the design can process due to pipeline architecture.
 ² Energy Consumption per Encryption.
 ³ Energy Consumption per Plaintext.

Energy Consumption per bit. 4

5with 3 shares.

Higher-Order SCA-Secure Implementations

Docier	$\#d^1$	#Block	#Key	Latency	$\#P.^{2}$	Rand.	$En./Enc^3$	$\mathrm{En.}/\mathrm{P.}^4$	$\mathrm{En./bit^5}$
Design		[bit]	[bit]	[cycles]		$\left[\text{bit/cycle} \right]$	[pJ]	[pJ]	[pJ]
SKINNY NF	2	64	64	128	4	128	4202.2	1050.6	16.4
SKINNY HPC2	2	64	64	160	5	192	10286.8	2057.4	32.1
SKINNY HPC3	2	64	64	96	3	384	4613.3	1537.8	24.0
SKINNY HPC2	3	64	64	160	5	384	15339.3	3067.9	47.9
SKINNY HPC3	3	64	64	96	3	768	6608.8	2202.9	34.4
PRESENT NF	2	64	128	666	1	8	10546.6	10546.6	164.8
KECCAK NF	2	200	-	72	3	0	3637.9	1212.6	18.2
LED	2	64	128	64	2	384	7502.4	3751.2	117.2

¹ Security order, d + 1: number of shares.

 2 The number of plaintexts that the design can process due to pipeline architecture.

³ Energy Consumption per Encryption.

⁴ Energy Consumption per Plaintext.

⁵ Energy Consumption per bit.

Fault Attacks Countermeasures

Design	$\frac{\#\text{Red./Nib}^1}{[\text{bit}]}$	#Correction [bit]	#Detection [bit]	Latency [cycles]	${{\rm En./Enc}^2}$ [pJ]	${ m En./bit^3}$ [pJ]
CRAFT	0	0	0	32	72.5	1.13
CRAFT IC II	3	1	0	32	146.4	2.29
CRAFT IC III	4	1	2	32	223.1	3.49
CRAFT IC II	7	2	0	32	464.1	7.25
${\tt CRAFT}$ ${\tt MV}^4$	8	1	0	32	217.5	3.39

1

- Redundancy size per nibble. Energy Consumption per Encryption. $\mathbf{2}$
- Energy Consumption per bit. 3

 4 Estimated from CRAFT

Summing up

We investigated the energy consumption of various implementations on real silicon:

- Unrolled implementations
- Round-based implementations
- First-order secure implementations
- Higher-order secure implementations
- Protected implementations against fault-injection attacks

Energy consumption increases by a factor of 6 with WDDL

Simply reducing the number of shares in masked implementations does not always result in decreased energy consumption

Achieving higher-order security requires a significant increase in energy consumption

A bigger area footprint does not necessarily result in higher energy consumption

Aein.RezaeiShahmirzadi@rub.de