

Punctured Syndrome Decoding Problem

Efficient Side-Channel Attacks Against Classic McEliece

Vincent Grosso Pierre-Louis Cayrel Brice Colombier Vlad-Florin Drăgoi Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France

Faculty of Exact Sciences, Aurel Vlaicu University, Arad, Romania

LITIS, University of Rouen Normandie, Saint-Etienne du Rouvray, France

Introduction

- ▶ Code-based candidate to the NIST PQC competition
- ▶ Key Encapsulation Mechanism from PKE à la Niederreiter
- Security based on the syndrome decoding problem

¹Photo: IBM Research

Algorithm 1 Classic McEliece encapsulation

Require: A binary (n - k, n) matrix **H** (public key)

Ensure: A session key K and a ciphertext c

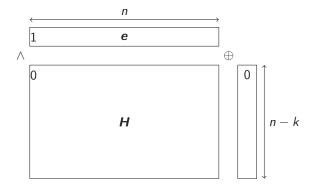
- 1: Generate a uniform random vector $\boldsymbol{e} \in \mathbb{F}_2^n$ with HW(\boldsymbol{e}) = t.
- 2: Compute $c \leftarrow He$ \triangleright target operation/encode
- 3: Compute $K \leftarrow \mathsf{H}(1 \parallel \boldsymbol{e} \parallel \boldsymbol{c})$

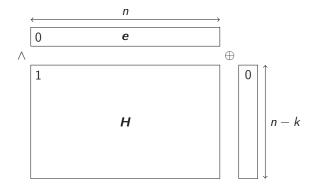
4: return (*c*, *K*)

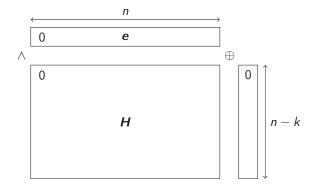
▷ session key

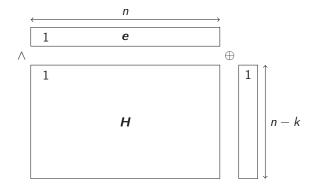
Algorithm 1 Classic McEliece encapsulation

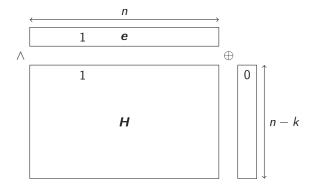
Require: A binary (n - k, n) matrix **H** (public key)

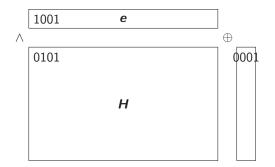

Ensure: A session key K and a ciphertext c

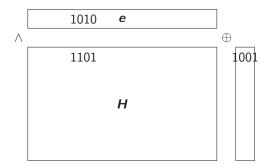

- 1: Generate a uniform random vector $\boldsymbol{e} \in \mathbb{F}_2^n$ with HW(\boldsymbol{e}) = t.
- 2: Compute $c \leftarrow He$ \triangleright target operation/encode
- 3: Compute $K \leftarrow \mathsf{H}(1 \parallel \boldsymbol{e} \parallel \boldsymbol{c})$

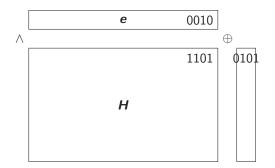

4: return (*c*, *K*)

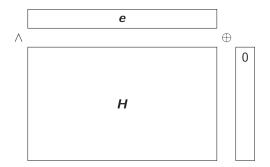

 $m{e}$ recovered \Rightarrow confidentiality over

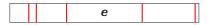

 \triangleright session key

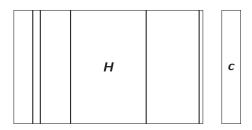


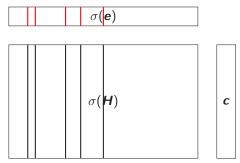


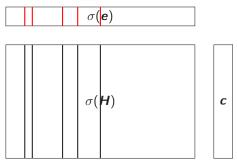








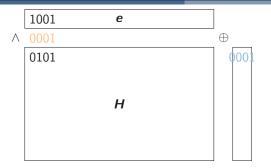

From c and H hard to find e of weight t, s.t. He = c

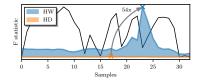

Security

- From c and H hard to find e of weight t, s.t. He = c
- ▶ Information Set Decoding strategy [Pra62]: find columns in the support of the vector *e* and perform Gaussian elimination

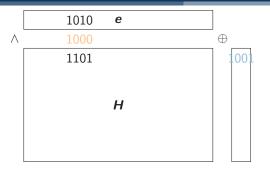
Security

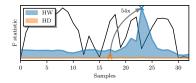
- From c and H hard to find e of weight t, s.t. He = c
- ▶ Information Set Decoding strategy [Pra62]: find columns in the support of the vector *e* and perform Gaussian elimination

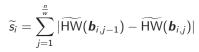

Improvements allow some omissions on the left part

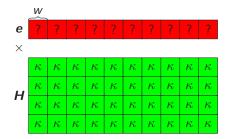

- ► Fault attacks [CCD⁺21]:
 - $\bullet\,$ change field operations from XOR to add in $\mathbb N$
 - use ILP to solve the $\mathbb{N}-\mathsf{SDP}$
 - limited to schoolbook multiplication (not packed)
- ▶ Side-channel attacks [CDCG22]:
 - recover the Hamming weights of intermediate results
 - combine information to obtain an erroneous $\mathbb{N}-\mathsf{SDP}$
 - use quantitative group testing and ISD

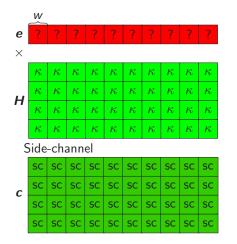
	w = 1	<i>w</i> = 8	w = 32	<i>w</i> = 64		
Fault attack						
Side-channel attack						
small noise	N/A					
medium noise	N/A					
large noise	N/A					


Errors analysis

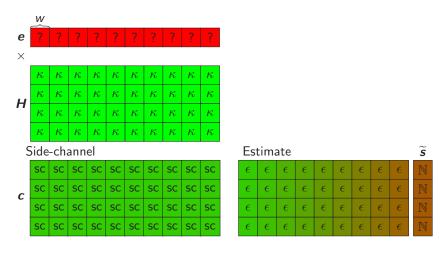

Available leakages



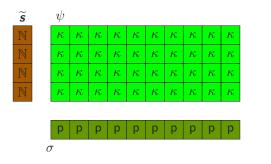

Available leakages



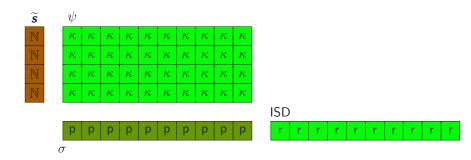
Limitations of previous side-channel attack: estimation



Limitations of previous side-channel attack: estimation


► Side-channel error

Limitations of previous side-channel attack: estimation


- ► Side-channel error
- ▶ Double cancellation (Hamming weight to Hamming distance), affects several coordinates of *š*

$$\forall j \in \llbracket 1, n \rrbracket, \quad \psi_j(\widetilde{s}) = \boldsymbol{H}_{.,j} \cdot \widetilde{s} + (1 - \boldsymbol{H}_{.,j}) \cdot (\boldsymbol{t} - \widetilde{s})$$

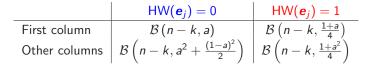
 Error on one coordinate of the syndrome impacts the score of all columns

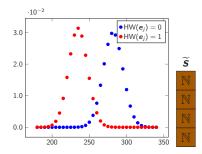
$$\forall j \in \llbracket 1, n \rrbracket, \quad \psi_j(\widetilde{s}) = \boldsymbol{H}_{.,j} \cdot \widetilde{s} + (1 - \boldsymbol{H}_{.,j}) \cdot (\boldsymbol{t} - \widetilde{s})$$

 Error on one coordinate of the syndrome impacts the score of all columns

Punctured Matrices

- Columns that do not belong to the support of *e* do not impact the *c* computation
- Divide-and-conquer approach
 - Double cancellation limited impact
 - Better resistance to local error

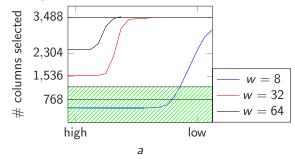

HW(e) << n


- If a block e_i = 0 ⇒ the intermediate results should not change for every row
- If a block e_i ≠ 0 ⇒ the intermediate results should change for half of the rows
- ▶ Probability of a block $e_i = 0$ decrease with the register size w

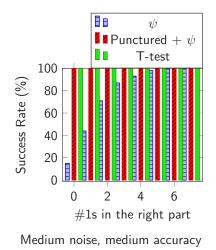
	<i>w</i> = 8	<i>w</i> = 32	<i>w</i> = 64
(n, k, t) = (3488, 2720, 64)	0.86	0.55	0.30
(n, k, t) = (8192, 6528, 128)	0.88	0.60	0.37

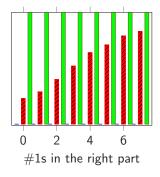
Distribution $e_i = 0$ or $\neq 0$

$$\#0 \in |\widetilde{\mathsf{HW}}(\boldsymbol{b}_{i,j-1}) - \widetilde{\mathsf{HW}}(\boldsymbol{b}_{i,j})|$$

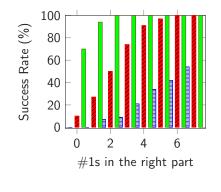


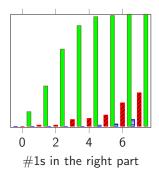
κ	κ	κ	κ	κ	κ	κ	κ	κ	κ
κ			κ					κ	κ
κ			κ					κ	κ
κ			κ					κ	κ


T-test separation plus feature selection


- For large register size, the puncture method does not remove enough columns
- System too large for efficient ISD

- Use the knowledge of the columns of the public matrix H
- Perform feature selection via T-test


Results



High noise, low accuracy

Register size impact

w = 32

w = 64

	w = 8	w = 32	<i>w</i> = 64			
ψ						
small noise						
medium noise						
large noise						
Puncture + ψ						
small noise						
medium noise						
large noise						
T-test						
small noise						
medium noise						
large noise						

- ▶ More efficient attacks for large noise/large register
- Divide-and-conquer approach
- Exploit knowledge of the public matrix
- Algebraic attack to exploit leakages from different steps in the KEM (matrix-vector product + hashing+ generate e)
- Unprofiled attack
- Masking countermeasure (no more low-weight)
- Long-term secret attack

Thanks for your attention!

Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu, and Lilian Bossuet.

Message-recovery laser fault injection attack on the Classic McEliece cryptosystem.

In Anne Canteaut and François-Xavier Standaert, editors, *Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II*, volume 12697 of *Lecture Notes in Computer Science*, pages 438–467. Springer, 2021. Brice Colombier, Vlad-Florin Dragoi, Pierre-Louis Cayrel, and Vincent Grosso.

Profiled side-channel attack on cryptosystems based on the binary syndrome decoding problem.

IEEE Trans. Inf. Forensics Secur., 17:3407–3420, 2022.

Eugene Prange.

The use of information sets in decoding cyclic codes. *IRE Trans. Inf. Theory*, 8(5):5–9, 1962.