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= Masking as a Countermeasure
Example of Boolean Masking (BM) in ¢ = Zyn

sensitive info: X (T, K) € G masks M; € ¢, for 1 <i<d Masked

device
sharing function

‘Linkage property,
for example, in BM:
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] Theoretical Problem

——  Crypto Masking Side-channel Attack |—

B compute sensitive values X ~ U(M) in an Abelian group (¢, ®) of order M = |
which depends on some secret K;

B secret sharing computation: X is split into d + 1 random shares X; ~ U(M):
X=Xo®X1D---D®XginG;

B this is a dth-order masking countermeasure against noisy leakages Yy, ..., Yq;

B defender’s (worst case) problem: Evaluate the minimum number of measurements
m that can achieve the best possible performance (SR), i.e., probability of success

Ps = Ps(K|Y™) given by the MAP rule.
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] Theoretical Problem

——  Crypto Masking Side-channel Attack |—

B compute sensitive values X ~ U(M) in an Abelian group (¢, ®) of order M = |
which depends on some secret K;

B secret sharing computation: X is split into d + 1 random shares X; ~ U(M):
X=Xo®X1D---D®XginG;

B the adversary performs m measurements to achieve a given success rate (SR);

B defender’s (worst case) problem: Evaluate the minimum number of measurements
m that can achieve the best possible performance (SR), i.e., probability of success

Ps = Ps(K|Y™) given by the MAP rule.
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| Evaluation Context: High Dimension Traces

A Trace Sample from the DPA Contest
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] Duc+al Evaluation Bound

“Making Masking Security Proofs Concrete,” Duc, Faust & Standaert, Eurocrypt2015

Theorem (Duc+al evaluation bound)

log L=1/M
X1 (1)

m = 5
— log(1 — (\/z,iz,?)dﬂ ITimo V1(Xi: Y1)

For high noise, the denominator is ~ (\/2’;/")?)‘“rl TT%, 1(X;; Yi)*'? which is too large even
for moderate SNR.
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| Duc+al Long Standing Conjecture

“Making Masking Security Proofs Concrete,” Duc, Faust & Standaert, Eurocrypt2015

Conjecture (Duc+al, revisited)

m > f(SR) (ﬁ I(X'; Yi)) B

i—0

where
B f js a function independent (or mildly depending) on the field size M;
m 7 = 1! js a noise amplification threshold;
B v = 1 s the exponent yielding an effective masking order d’ = ~d.

When the mutual information is expressed in bits.
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] Masure+al Evaluation Bound

“A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations,” Masure,

Rioul & Standaert CARDIS2022

Theorem (Masure+al)

o d(Ps|l31)
" log(1+ M1, (XY
og(1 + > H,:o loge (Xi; Yi))

B independently, “On the Success Rate of Side-Channel Attacks on Masked Implementations,” Ito,
Ueno & Homma, CCS2022 derived the same expression with M — 1 instead of M/2. Their

proof uses Pinsker inequality and the Fourier transform on ¢ = Z5 (Parseval)
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] Masure+al Evaluation Bound

“A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations,” Masure,

Rioul & Standaert CARDIS2022

Theorem (Masure+al)

o d(Ps|li7)
" log(1+ M1, (XY
og(1 + > H,:o loge (Xi; Yi))

B independently, “On the Success Rate of Side-Channel Attacks on Masked Implementations,” Ito,
Ueno & Homma, CCS2022 derived the same expression with M — 1 instead of M/2. Their
proof uses Pinsker inequality and the Fourier transform on ¢ = Z5 (Parseval)

® for high noise, the denominator is ~ M( -2 )? Hf’:OI(X,-; Y;) which improves upon

loge
(\/2’:@?)‘”1 TT%, 1(Xi; Yi)*/2. Yet it still gives loose security guarantees compared to
actual attacks (factor 256 for AES) TELECOM
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| Revisiting Mrs. Gerber’s Lemma

"A Theorem on the Entropy of Certain Binary Sequences and Applications: Part I,” Wyner & Ziv,
Transaction Information Theory, 1973

Lemma (MGL)

h(h=Y(x) « h=Y(y)) is convex in x for fixed y, where h(p) = —plogp — (1 — p) log(1 — p)
andpxq=p(l-q)+(1-p.

Lemma (Revisited MGL)
For G = 75,

HSD X,,Y )

where ¢(x) = log(2) — h(15%) is the binary DFT of h.
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| Revisiting Mrs. Gerber’s Lemma

"The EPI and MGL for Groups of Order 2n,” Jog & Anantharam, Transaction Information Theory, 2014

Lemma (Revisited Extended MGL)

For || = 2",
d

1X,Y) < ([ [ (xi,v))

i=0

where ¢(x) = log(2) — h(15%) and the product is taken only over I(X;; Y;) < log 2.

The number d’ < d of shares such that I(X;; Y;) < log 2 can be seen as the effective
masking order of the implementation. For correct masking implementation and under
high noise d’ = d.
TELEIE’HT:I
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Consequence for Masking Security (Our Contribution)

With the condition that there exists at least one I(X;; Y;) < log(2):

Theorem (Main Theorem)
For alphabet size M = 2",
d(Ps][5)
e(IT 21X Y1)
For high noise (all I(X;; Y;) < log(2)), since ¢(x) ~ ("’%e)x2 as x — 0, the denominator is

~ (|oée)dH,q:0 I(Xi:Yi)
The derived bound is optimal without further assumption.
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| High Noise Regime

Theorem (Main Theorem with High Noise)
For alphabet size M = 2", and high noise

L dEd)
- (Ioze)d HICI:O I(Xi;Yi)

Proof.

p(x) = (B)x2 as x — 0 O

This proves Duc’s conjecture except for the noise threshold 7 =~ 0.72 and not 1. Though

this is only with the Taylor expansion in zero, it seems that there is no real "noise

threshold".
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Illustration for M = 256

d=1 --- d=2 --- d=3 - Masure+al.
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Figure: Illustration of the inequality for M = 256 (e.qg., the AES S-box).
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] Practical Evaluation LSB

Direct computation - Masure+al. --- MGL
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] Practical Evaluation HW

Direct computation - Masure+al. --- MGL
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] Practical Evaluation d =1

Direct attack Cherisey =---  Ours+Cherisey
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Figure: Extending MI bounds to concrete security bounds for o2 = 2°.d = 1.
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Figure: Extending MI bounds to concrete security bounds for o2 = 22,d = 2.
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| Conclusion & Perspectives

17

B We derived optimal bounds removing the field size from Duc+al. conjecture.
B Tighter bounds with mild assumptions ? n~¢ for "generic leakages"
B Tightness for masked computations (e.g., multiplications) and not only encodings ?

B Extension to M # 2" especially for prime M ? We provide preliminary results using
majorization arguments in the article.

B Other metrics (Rényi entropy/information, maximal leakage, etc) ?
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| Supplementary Material: Tighter MGL at the Bit Level ?

I(Xo* ... XgiYo...Ya) = > I(Xo*...Xa)iiYo... Yal(Xo*...Xa)i *) (2)
i=1
<D H((Xo* .. Xa)iiYo.. . YalXo7 .. X7 (3)
i=1
~n o[ T e (X)) (4)
J

Conjecture: We can still gain n~¢ for "generic leakages"
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| Using Majorization

Theorem (Improved Bound for Generic Groups)
Hf‘j:o CMI(Y}; L;) where C = 2/ log e we have

LetP =}
MI(Y; L) < m|n<log(1+M2(4M —1)P), (~ +f)|og(1+Mf)>
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