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Side Channel
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Masking as a Countermeasure
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Theoretical Problem

number of queries. Section IV derives Mrs. Gerber’s lemma
for min-entropy, first for two summands in any finite Abelian
group, then extends it to the general case of d+1 summands.
Section V concludes and gives some perspectives.

II. PRELIMINARIES AND NOTATIONS

A. Framework and Notations
Let K be the secret key and T be a public variable (usually

plaintext or ciphertext) known to the attacker. It is assumed
that T is independent of K, and K is uniformly distributed
over an Abelian group G of order M . The cryptographic algo-
rithm operates on K and T to compute a sensitive variable X ,
which takes values in the same group G and is determined by
K and T , in such a way that X is also uniformly distributed
over G.

In a masking scheme of order d, the sensitive variable X is
randomly split into d + 1 shares X0, X1, . . . , Xd and cryp-
tographic operations are performed on each share separately.
Thus, X = X0 � X1 � · · · � Xd, where each share Xi is
a uniformly distributed random variable over G and � is the
group operation in G. For this group operation, we let  g
denote the opposite of g 2 G. A typical example is “Boolean
masking”, for which � ⌘  is the bitwise XOR operation.

During computation, shares X = (X0, X1, . . . , Xd) are
leaking through some side channel. Noisy “traces,” denoted
by Y = (Y0, Y1, . . . , Yd), are measured by the attacker,
where Y is the output of a memoryless side channel with
input X . Since masking shares are drawn uniformly and
independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1, Y2, . . . , Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.

Crypto Masking Side-channel Attack
Xm XmK Y m K̂

Tm Tm

Fig. 1. Side-channel analysis as a (unintended) “communication” channel.

B. Rényi’s ↵-Entropy and Arimoto’s Conditional ↵-Entropy
Assume that either 0 < ↵ < 1 or 1 < ↵ < +1 (the limiting

values 0, 1, +1 can be obtained by taking limits). We consider
probability distributions P, Q with a dominating measure µ,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
of [15] in the following

Definition 1 (Rényi ↵-Entropy and ↵-Divergence):

H↵(P ) = ↵
1�↵ log kpk↵ (1)

D↵(PkQ) = 1
↵�1 loghpkqi↵↵ (2)

with the special notation:

kpk↵ =
�Z

|p|↵dµ
�1/↵

(3)

hpkqi↵ =
�Z

p↵q1�↵dµ
�1/↵

. (4)

The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
H↵(X|Y ) were proposed in the literature. We use Arimoto’s
definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional ↵-Entropy [2]): The
conditional ↵-entropy of X given Y is defined as

H↵(X|Y ) =
↵

1� ↵
log EY kpX|Y k↵. (6)

Assuming X takes values in a finite alphabet, the conditional
min-entropy can be obtained by letting ↵!1 in H↵(X|Y ):

Definition 4 (Conditional Min-Entropy [24]):

H1(X|Y ) = � log(EY max
x

pX|Y ) = � log Ps(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
QY

D↵(PXY kPX ⇥QY ) (8)

= ↵
↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

compute sensitive values X ∼ U(M) in an Abelian group (G,⊕) of order M = |G|,
which depends on some secret K;

secret sharing computation: X is split into d + 1 random shares Xi ∼ U(M):
X = X0 ⊕ X1 ⊕ · · · ⊕ Xd in G;

this is a dth-order masking countermeasure against noisy leakages Y0, . . . , Yd;

defender’s (worst case) problem: Evaluate the minimum number of measurements
m that can achieve the best possible performance (SR), i.e., probability of success
Ps = Ps(K|Ym) given by the MAP rule.
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Evaluation Context: High Dimension Traces
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A Trace Sample from the DPA Contest
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Duc+al Evaluation Bound

“Making Masking Security Proofs Concrete,” Duc, Faust & Standaert, Eurocrypt2015

Theorem (Duc+al evaluation bound)

m ⩾
log 1−1/M

1−Ps

− log(1 − ( M√
2 log e

)d+1
∏d

i=0

√
I(Xi; Yi))

(1)

For high noise, the denominator is ≈ ( M√
2 log e

)d+1
∏d

i=0 I(Xi; Yi)
1/2 which is too large even

for moderate SNR.
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Duc+al Long Standing Conjecture

“Making Masking Security Proofs Concrete,” Duc, Faust & Standaert, Eurocrypt2015

Conjecture (Duc+al, revisited)

m ⩾ f(SR)

( d∏

i=0

I(Xi; Yi)

τ

)−γ

where

f is a function independent (or mildly depending) on the field size M;

τ = 11 is a noise amplification threshold;

γ = 1 is the exponent yielding an effective masking order d′ = γd.

1When the mutual information is expressed in bits.
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Masure+al Evaluation Bound

“A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations,” Masure,

Rioul & Standaert CARDIS2022

Theorem (Masure+al)

m ⩾
d(Ps|| 1

M)

log(1 + M
2

∏d
i=0

2
log e I(Xi; Yi))

independently, “On the Success Rate of Side-Channel Attacks on Masked Implementations,” Ito,

Ueno & Homma, CCS2022 derived the same expression with M− 1 instead of M/2. Their
proof uses Pinsker inequality and the Fourier transform on G = Zn

2 (Parseval)

for high noise, the denominator is ≈ M( 2
log e)

d
∏d

i=0 I(Xi; Yi) which improves upon

( M√
2 log e

)d+1
∏d

i=0 I(Xi; Yi)
1/2. Yet it still gives loose security guarantees compared to

actual attacks (factor 256 for AES)
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Revisiting Mrs. Gerber’s Lemma

”A Theorem on the Entropy of Certain Binary Sequences and Applications: Part I,” Wyner & Ziv,

Transaction Information Theory, 1973

Lemma (MGL)

h(h−1(x) ⋆ h−1(y)) is convex in x for fixed y, where h(p) = −p log p − (1 − p) log(1 − p)
and p ⋆ q = p(1 − q) + (1 − p)q.

Lemma (Revisited MGL)

For G = Z2,

I(X,Y) ⩽ φ(
d∏

i=0

φ−1(I(Xi, Yi)))

where φ(x) = log(2)− h(1−x
2 ) is the binary DFT of h.
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Revisiting Mrs. Gerber’s Lemma

”The EPI and MGL for Groups of Order 2n,” Jog & Anantharam, Transaction Information Theory, 2014

Lemma (Revisited Extended MGL)

For |G| = 2n,

I(X,Y) ⩽ φ(
d∏

i=0

φ−1(I(Xi, Yi)))

where φ(x) = log(2)− h(1−x
2 ) and the product is taken only over I(Xi; Yi) < log 2.

The number d′ ⩽ d of shares such that I(Xi; Yi) < log 2 can be seen as the effective
masking order of the implementation. For correct masking implementation and under
high noise d′ = d.
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Consequence for Masking Security (Our Contribution)

With the condition that there exists at least one I(Xi; Yi) < log(2):

Theorem (Main Theorem)

For alphabet size M = 2n,

m ⩾
d(Ps|| 1

M)

φ
(∏

i φ
−1(I(Xi; Yi))

)

For high noise (all I(Xi; Yi) < log(2)), since φ(x) ≈ ( log e
2 )x2 as x → 0, the denominator is

≈ ( 1
log e)

d
∏d

i=0 I(Xi; Yi)

The derived bound is optimal without further assumption.
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High Noise Regime

Theorem (Main Theorem with High Noise)

For alphabet size M = 2n, and high noise

m ≳
d(Ps|| 1

M)

( 2
log e)

d
∏d

i=0 I(Xi; Yi)

Proof.

φ(x) ≈ ( log e
2 )x2 as x → 0

This proves Duc’s conjecture except for the noise threshold τ ≈ 0.72 and not 1. Though
this is only with the Taylor expansion in zero, it seems that there is no real "noise
threshold".
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Illustration for M = 256

d = 1 d = 2 d = 3 Masure+al.
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Figure: Illustration of the inequality for M = 256 (e.g., the AES S-box).
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Practical Evaluation LSB

Direct computation Masure+al. MGL
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(b) lsb, d = 2.

(c) MI in function of the Gaussian noise variance σ2, for n = 8 bits.

13 April 3, 2023 Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked Encodings



Practical Evaluation HW

Direct computation Masure+al. MGL
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(b) HW, d = 2.

(c) MI in function of the Gaussian noise variance σ2, for n = 8 bits.
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Practical Evaluation d = 1

Direct attack Cherisey Ours+Cherisey
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Figure: Extending MI bounds to concrete security bounds for σ2 = 25,d = 1.
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Practical Evaluation d = 2

Direct attack Cherisey Ours+Cherisey
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Figure: Extending MI bounds to concrete security bounds for σ2 = 22,d = 2.
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Conclusion & Perspectives

We derived optimal bounds removing the field size from Duc+al. conjecture.

Tighter bounds with mild assumptions ? n−d for "generic leakages"

Tightness for masked computations (e.g., multiplications) and not only encodings ?

Extension to M ̸= 2n especially for prime M ? We provide preliminary results using
majorization arguments in the article.

Other metrics (Rényi entropy/information, maximal leakage, etc) ?

17 April 3, 2023 Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked Encodings



Removing the Field Size Loss from Duc et al.’s

Conjectured Bound for Masked Encodings

Thank you!

Julien Béguinot, Wei Cheng, Loïc Masure, Sylvain Guilley,
Yi Liu, Olivier Rioul & François-Xavier Standaert

LTCI, Télécom Paris, Institut Polytechnique de Paris
Secure-IC S.A.S.

ICTEAM Institute, Université catholique de Louvain

April 3, 2023

https://eprint.iacr.org/2022/1738.pdf

17 April 3, 2023 Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked Encodings

https://eprint.iacr.org/2022/1738.pdf


Supplementary Material: Tighter MGL at the Bit Level ?

I(X0 ⋆ . . .Xd; Y0 . . . Yd) =
n∑

i=1

I((X0 ⋆ . . .Xd)i; Y0 . . . Yd|(X0 ⋆ . . .Xd)
i−1
1 ) (2)

⩽
n∑

i=1

I((X0 ⋆ . . .Xd)i; Y0 . . . Yd|Xi−1
0,1 . . .Xi−1

d,1 ) (3)

≈ n−dφ(
∏

j

φ−1(I(Xj; Yj))) (4)

Conjecture: We can still gain n−d for "generic leakages"
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Using Majorization

Theorem (Improved Bound for Generic Groups)

Let P = 1
4

∏d
i=0 C MI(Yi; Li) where C = 2/ log e we have

MI(Y;L) ⩽ min

(
log(1 + M2(4

1
M − 1)P), (

1

M
+
√

P) log(1 + M
√

P)

)
. (5)
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