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• Loss functions
• Estimate the prediction error
• Derivatives are used to update weights
• Key role in learning process

• Example: mean absolute error (MAE)

𝒚𝒚 =
0
1
0

, �𝒚𝒚 =
0.3
0.5
0.2

|0−0.3|+|1−0.5|+|0 −0.2|
3

= 0.33



Introduction

Introduction Motivation          FLR          Results          Conclusion 3

• Mean absolute error
• 𝑀𝑀𝑀𝑀𝑀𝑀 𝒚𝒚, �𝒚𝒚 = 1
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• Mean squared error
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• Categorical cross-entropy
• 𝐶𝐶𝐶𝐶𝐶𝐶 𝒚𝒚, �𝒚𝒚 = −∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 log �𝑦𝑦𝑖𝑖



Loss Functions in SCA
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• Zhang et al. (2020), Cross Entropy Ratio (CER)
• Maximize the loss with incorrect predictions

• Zaid et al. (2020), Ranking loss (RKL)
• Maximize the rank difference of the correct key and the other key bytes

• Kerkhof et al. (2021)
• Broad analysis of loss function performance
• Multiple architectures, datasets, leakage models
• CER performs well in many settings



Motivation: learn from the hard samples
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• Easy positives/negatives (𝑛𝑛𝑖𝑖+1): 
• samples classified as positive/negative examples.
• The bias introduced by easy samples makes it difficult 

for a network to learn rich semantic relationships 
from samples

• Hard positives/negatives (𝑛𝑛𝑖𝑖+2): 
• samples misclassified as negative/positive examples.
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Motivation: fight with the imbalanced data
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• Middle classes (i.e., HW=4) is over-represented 
compared to the other classes



Focal Loss Ratio
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• Focal Loss Ratio (FLR)
• Combines both objectives into a loss single function
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• 𝜶𝜶: weight vector for each classes
• 𝜸𝜸: attention level on hard examples
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Performance Evaluation Strategy
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1: Generate, train, and test 100 models sampled from range S with loss function L.
2: Select the best performing model 𝑇𝑇𝑏𝑏.
3: Train and test the model 𝑇𝑇𝑏𝑏 10 times.
4: Select the median performing model 𝑇𝑇𝑏𝑏𝑏𝑏.
5: Evaluate 𝑇𝑇𝑏𝑏𝑏𝑏 with evaluation metrics: GE and SR.



Experimental Setup
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• Focal Loss Ratio (FLR) tuning strategy
• FLR:  fixed value: α = 0.25 and γ = 2.0; 
• FLR_optimized: optimized via random search; 
• FLR_balanced: determined by the sample number of each class

• Searching range for MLP and CNN:



Experimental Results (ASCADf)
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Experimental Results (ASCADr)

Introduction          Motivation          FLR          Results Conclusion 12



Experimental Results (CHES CTF)
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Experimental Results with Misalignment
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Conclusion
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• FLR is able to learn from the hard samples and deal with the class imbalance
• FLR loss performs well in various test scenarios, while it still requires 

hyperparameter tuning
• When using FLR loss, it is a good option to start with fixed hyperparameter (i.e., 

one used in the paper), then start tuning

• For future work, it would be interesting to explore other optimization strategies
• Develop loss functions based on SCA metrics
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