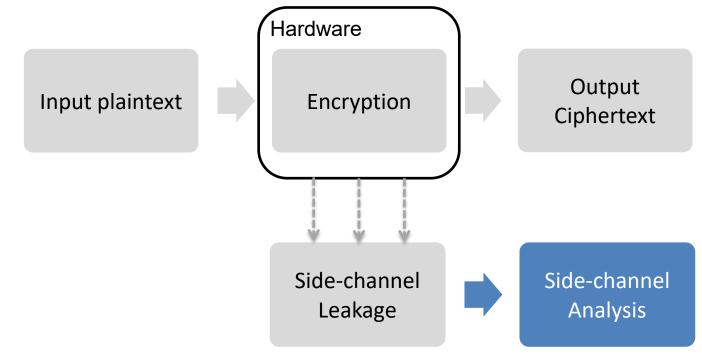
On the Evaluation of Deep Learningbased Side-channel Analysis

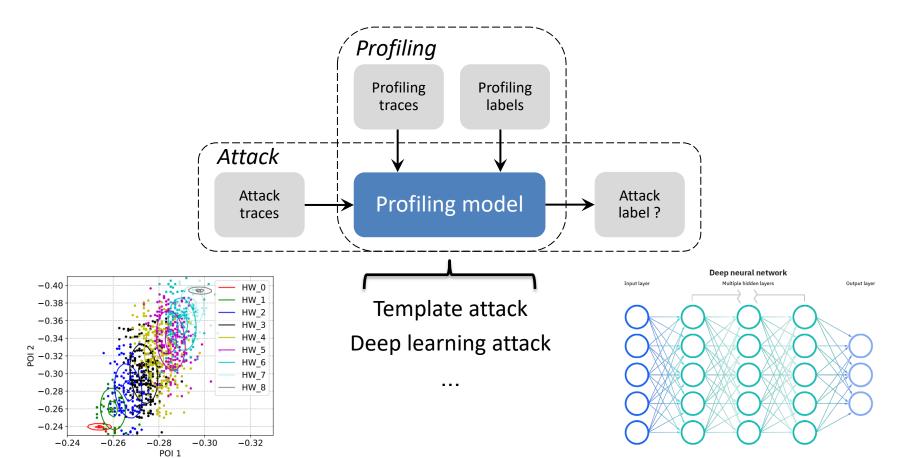
Lichao Wu¹, Guilherme Perin^{1,2} and Stjepan Picek^{2, 1}

¹Delft University of Technology, The Netherlands ²Radboud University, The Netherlands

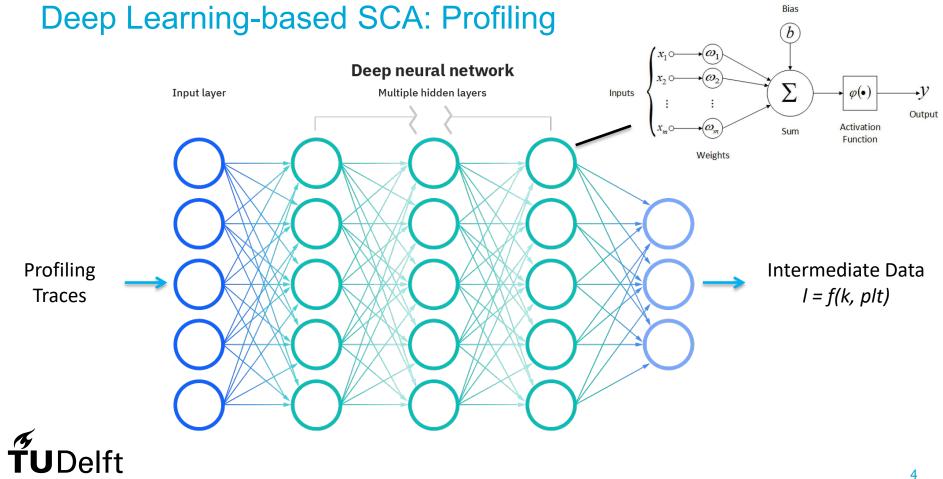
Side-channel Analysis (SCA)



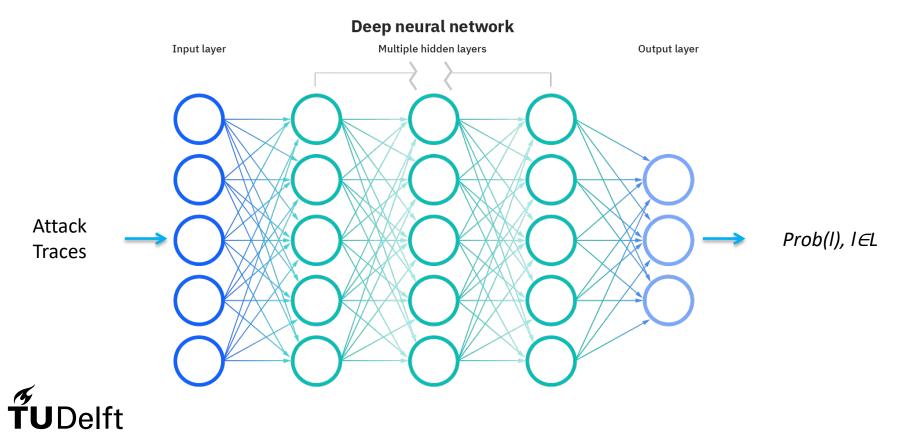
Profiling Side-channel Attack



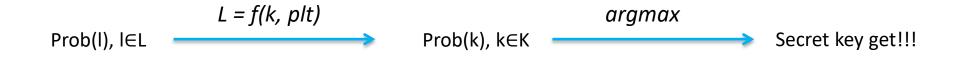
3



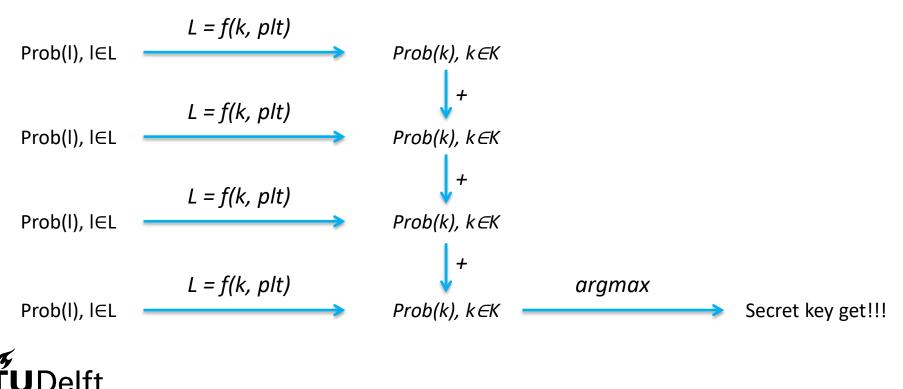
Deep Learning-based SCA: Attack



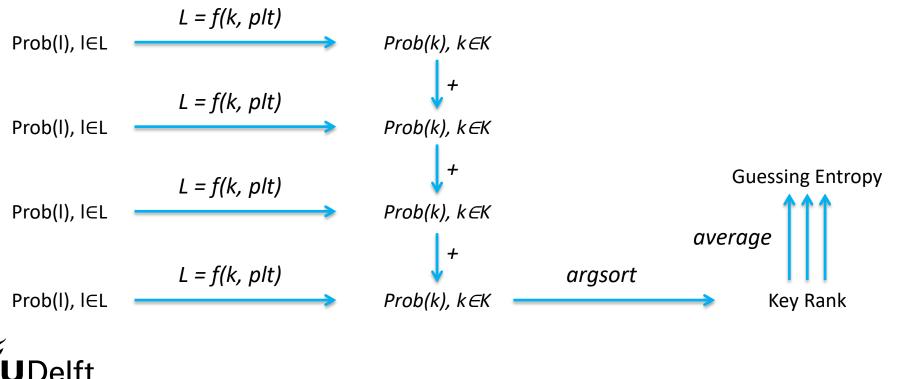
Deep Learning-based SCA: Post-processing



Deep Learning-based SCA: Post-processing



Deep Learning-based SCA: Post-processing



Algorithmic Randomness of DL-based SCA

- Initialization
 - Random weight & bias initialization
- Regularization
 - Dropout layer
- Optimization procedure
 - Stochastic gradient descent (SGD)
 - Mini-batches

Deep neural network

Multiple hidden lavers

- Limited-memory Broyden–Fletcher–Goldfarb–Shannoalgorithm (L-BFGS)

Input lave

• Others

elft

Random architecture of the model

Output laver

The Goal of This Work

- Investigate the influence of algorithmic randomness on the attack performance
 - Mean
 - Standard deviation
- Investigate the most appropriate summary statistic for evaluating the attack performance
 - Arithmetric mean
 - Geometric mean
 - Medium mean

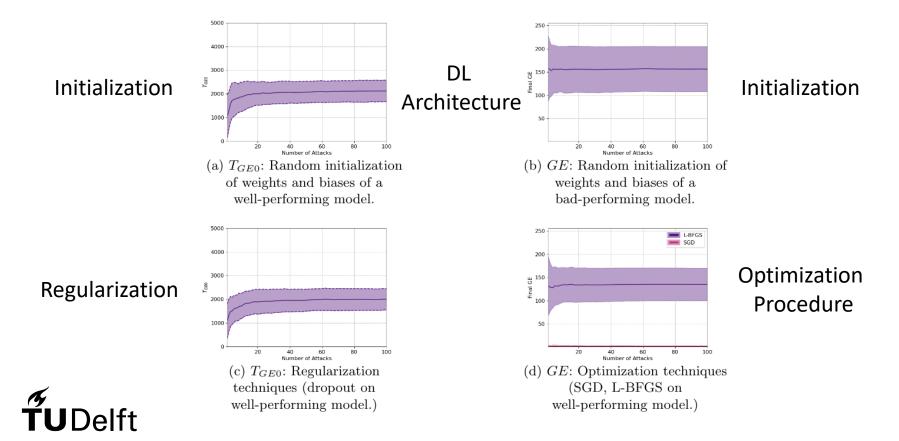
$$\overline{x} = \frac{1}{z} \sum_{i=1}^{z} x_i$$
$$\check{x} = \left(\prod_{i=1}^{z} x_i\right)^{\frac{1}{z}}$$
$$\tilde{x} = \frac{x_{\frac{z}{2}} + x_{\frac{z}{2}+1}}{2}$$

 Investigate how a different number of independent experiments (key rank evaluations) in the attack phase influences attack performance
 UDelft

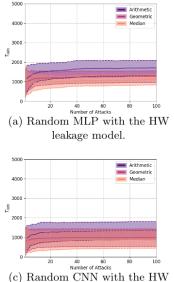
Experimental Results

- The Influence of Algorithmic Randomness
- The Best Summary Statistic for Evaluating the Attack
 Performance

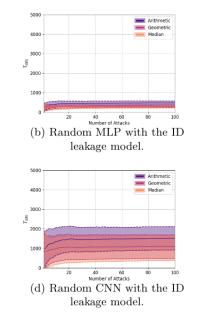
The Influence of Algorithmic Randomness



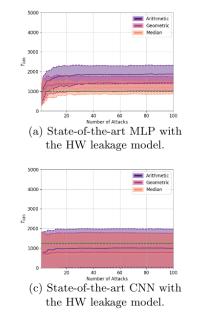
The Best Statistic for Evaluating the Attack Performance: on the ASCAD Fixed Key Dataset

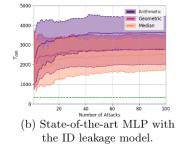


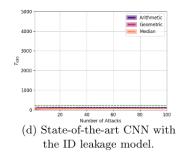
leakage model.



Random Architectures

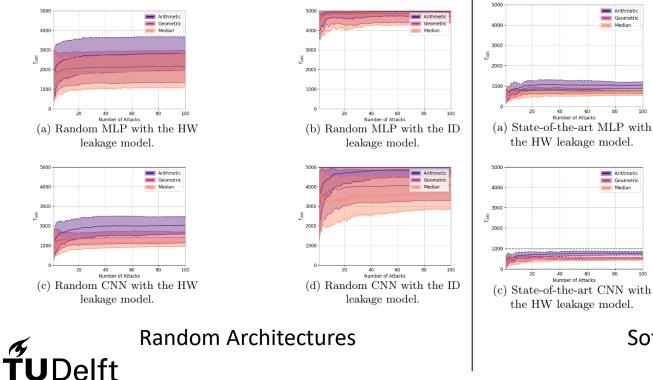


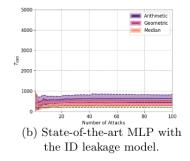


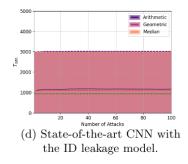


SotA Architectures

The Best Statistic for Evaluating the Attack Performance: on the ASCAD Random Keys Dataset

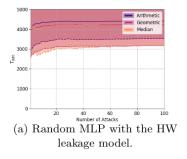


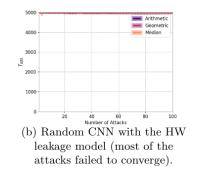


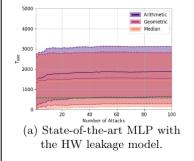


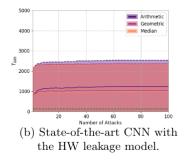
SotA Architectures

The Best Statistic for Evaluating the Attack Performance: on the CHES_CTF 2018 Dataset









Random Architectures

SotA Architectures

Conclusions

- Deep learning-based SCA can show different attack results due to algorithmic randomness and skewed distribution of attack results
- The median mean, instead of arithmetic mean, is the best choice since it is not affected by outliers and thus represents a resistant measure of a center
- Large number of independent experiments to average the attack performance does not increase the stability of results
- For state-of-the-art models, a large standard deviation indicates the low stability. Thus, the performance of such models could be questionable when facing practical challenges such as devices' portability
- We emphasize the necessity of reporting the averaged performance over a number of profiling models with different weight initialization so that the actual attack performance can be reliably estimated

Future Works

- Consider dataset randomness and use more summary statistics
- It would be interesting to compare the results for line plots (as commonly used) and boxplots when depicting the GE results

Thanks for your attention!

TUDelft