
On the susceptibility of Texas Instruments

SimpleLink platform microcontrollers to

non-invasive physical attacks

Lennert Wouters, Benedikt Gierlichs, Bart Preneel

COSADE 2022

COSIC



COSIC

• Texas Instruments CC2640R2F-Q1

• Debug interface is locked

• Flash storage

• NXP Secure Element

• Accelerometer

2

Tesla Model 3 key fob



COSIC

3

The SimpleLink Platform

Image source: https://www.ti.com/wireless-connectivity/applications.html

Building security

Automotive Medical

Critical infrastructure



COSIC

• Secure wireless stack (provided by Texas Instruments)

• Secure implementations of secure protocols

• Secure application code (provided by developers)

• Hardware security features?

• Secure boot and remote attestation

• Secure key storage

• TRNG

• (Protected) hardware accelerators

• Debug security 

• IP protection

4

What we hope for



COSIC

• Defeating debug security allows to:

• Recover firmware (IP)
• Counterfeit products

• Evaluating the security of the application code

• Defeat secure boot and security features that rely on it

• The presented attacks require physical access

• Extracting information from one device can lead to attacks that scale
• Weak key derivation or master keys

• Proprietary crypto

• Software vulnerabilities 

5

Debug security



COSIC

6

CC13xx/CC26xx overview



COSIC

• The first piece of code that executes after reset

• Immutable and mapped at 0x10000000

• Responsible for initial setup and security configuration

• Security settings are stored in Flash (CCFG)

• Extracting the ROM bootloader enables us to reverse engineer it

• How is the debug interface disabled?

7

The ROM bootloader



COSIC

• Allows to read and write memory

• Does not run when a valid firmware image is available

• Can be activated using a ‘backdoor’

• Or by erasing the microcontroller

• Implemented an interface in Python

• Ask the ROM bootloader to read itself

8

ROM bootloader: serial interface

Image source: https://www.ti.com/lit/an/swra466d/swra466d.pdf



COSIC

• Static analysis in Ghidra

9

ROM bootloader: analysis (1)



COSIC

• Emulation of the ROM bootloader using Unicorn

• Code coverage to augment Ghidra

• Other uses:

• SCA and FI simulation

• Fuzzing

10

ROM bootloader: analysis (2)



COSIC

11

ROM bootloader: flowchart



COSIC

12

ROM bootloader: fault injection



COSIC

13

Microcontroller power supply

CC13xx/CC26xx 

(simplified)

Image source: https://www.ti.com/lit/an/swra640f/swra640f.pdf



COSIC

14

Crowbar voltage glitch Side-channel analysis



COSIC

15

CC2640R2F 

(Cortex-M3)

CC2652R1F 

(Cortex-M4)

• 200 MSPS, 12-bit ADC

• Sample buffer: ~130k samples

• Segmented memory feature

• Two crowbar MOSFETs

• High resolution glitch generation 

(sub-nanosecond resolution) 

Targets Attack platform



COSIC

• Target: a dummy program

16

Determining a suitable glitch width



COSIC

17

ROM bootloader: glitch offset

Reset

Application codeROM bootloader



COSIC

18

CC2640R2F VS CC2652R1F



COSIC

1. Reset the microcontroller

2. Wait (glitch offset)

3. Activate glitch MOSFET (glitch width)

4. Try to connect using a debugger (slow)

Step 4: during enumeration we can

read AON_WUC:JTAGCFG

19

Glitching JTAG configuration



COSIC

1. Reset the microcontroller

2. Wait (glitch offset)

3. Activate glitch MOSFET (glitch width)

4. Check if DIO_23 is high (fast)

20

Glitching eFuse check



COSIC

Target: JTAG configuration

• 2,5 s per glitch attempt

• (0,1 s during enumeration)

• CC2640R2F: ~5% success rate

• CC2652R1F: ~1% success rate

Target: eFuse readout/check

• 100 glitch attempts per second

• CC2640R2F: ~10% success rate

• CC2652R1F: ~0,1% success rate

21

Debug security bypass results



COSIC

DEMO 

22

https://www.forbes.com/sites/lanceeliot/2019/11/30/top-ten-reasons-teslas-cybertruck-windows-shattered-despite-being-unbreakable/



COSIC

23

Verification on a real target

• Extracted the firmware from a Tesla Model 3 key fob

• Recovered an AES key from the firmware (firmware updates?)

• Software can now be analyzed statically and dynamically



COSIC

• One AES operation takes 2 + 3 × 𝑟 clock cycles

• Or 32 clock cycles for one AES-128 operation

• The implementation operates on the full AES state

• Side-channel analysis

• Differential fault analysis

24

The hardware AES co-processor



COSIC

• Determine a suitable leakage model

• 100k traces with known key and plaintext

• Compute all intermediate states

• Perform CPA with all intermediates (HW)

• And all combinations of intermediates (HD)

• HW leakage of plaintext and ciphertext

• SubBytes ⊕ ShiftRows

• r AddRoundKey ⊕ r + 1 AddRoundKey

• r9 AddRoundKey out ⊕ Ciphertext

25

HW AES: side-channel analysis



COSIC

• In total 100 (x 16) attacks, 100k traces per attack

• 1.5 minutes to acquire 100k traces using segmented memory

• Traces a preprocessed before the attack

• CC2640 @ 24 MHz 

• 12 MHz supplied by CW

• Synchronous sampling

• CC2652 @ 48 MHz

• Asynchronous sampling

26

HW AES: Attack results



COSIC

• Inject a single byte fault before MixColumns in round 9

• Results in 4 fault ciphertext bytes

• One valid ciphertext and two such faults for each column allow to recover 

the key

• Faults injected using the ChipWhisperer

• Key recovery using Jean Grey - PhoenixAES (and Hulk)

• https://github.com/SideChannelMarvels

27

HW AES: Differential Fault Analysis



COSIC

• Vulnerability was confirmed by Texas Instruments

• Cannot be resolved without a new hardware revision

• Physical attacks are considered out of scope for this product

• (and any other product for which physical security is not advertised)

• TI PSIRT was easy to reach and responsive

28

Texas Instruments response

https://www.ti.com/lit/an/swra739/swra739.pdf



COSIC

• Debug security can be easily compromised on CC13xx/CC26xx microcontrollers

• Using basic non-invasive physical attacks

• Most general-purpose microcontrollers are vulnerable to similar attacks 

• This type of attack has been known for >20 years!

• Assume that an attacker will be able to extract the firmware

• Outdated attacker models

• A physical attacker is allowed to attach a debugger

• A physical attacker is not allowed to mount physical attacks

29

Conclusion



COSIC

30

COSIC

@LennertWo

lennert.wouters@esat.kuleuven.be 

github.com/KULeuven-COSIC/SimpleLink-FI


