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• Texas Instruments CC2640R2F-Q1

• Debug interface is locked

• Flash storage

• NXP Secure Element

• Accelerometer
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Tesla Model 3 key fob
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The SimpleLink Platform

Image source: https://www.ti.com/wireless-connectivity/applications.html

Building security

Automotive Medical

Critical infrastructure
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• Secure wireless stack (provided by Texas Instruments)

• Secure implementations of secure protocols

• Secure application code (provided by developers)

• Hardware security features?

• Secure boot and remote attestation

• Secure key storage

• TRNG

• (Protected) hardware accelerators

• Debug security 

• IP protection

4

What we hope for
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• Defeating debug security allows to:

• Recover firmware (IP)
• Counterfeit products

• Evaluating the security of the application code

• Defeat secure boot and security features that rely on it

• The presented attacks require physical access

• Extracting information from one device can lead to attacks that scale
• Weak key derivation or master keys

• Proprietary crypto

• Software vulnerabilities 
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Debug security
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CC13xx/CC26xx overview
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• The first piece of code that executes after reset

• Immutable and mapped at 0x10000000

• Responsible for initial setup and security configuration

• Security settings are stored in Flash (CCFG)

• Extracting the ROM bootloader enables us to reverse engineer it

• How is the debug interface disabled?
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The ROM bootloader
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• Allows to read and write memory

• Does not run when a valid firmware image is available

• Can be activated using a ‘backdoor’

• Or by erasing the microcontroller

• Implemented an interface in Python

• Ask the ROM bootloader to read itself
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ROM bootloader: serial interface

Image source: https://www.ti.com/lit/an/swra466d/swra466d.pdf
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• Static analysis in Ghidra
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ROM bootloader: analysis (1)
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• Emulation of the ROM bootloader using Unicorn

• Code coverage to augment Ghidra

• Other uses:

• SCA and FI simulation

• Fuzzing
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ROM bootloader: analysis (2)
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ROM bootloader: flowchart
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ROM bootloader: fault injection
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Microcontroller power supply

CC13xx/CC26xx 

(simplified)

Image source: https://www.ti.com/lit/an/swra640f/swra640f.pdf
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Crowbar voltage glitch Side-channel analysis
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CC2640R2F 

(Cortex-M3)

CC2652R1F 

(Cortex-M4)

• 200 MSPS, 12-bit ADC

• Sample buffer: ~130k samples

• Segmented memory feature

• Two crowbar MOSFETs

• High resolution glitch generation 

(sub-nanosecond resolution) 

Targets Attack platform
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• Target: a dummy program
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Determining a suitable glitch width
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ROM bootloader: glitch offset

Reset

Application codeROM bootloader
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CC2640R2F VS CC2652R1F
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1. Reset the microcontroller

2. Wait (glitch offset)

3. Activate glitch MOSFET (glitch width)

4. Try to connect using a debugger (slow)

Step 4: during enumeration we can

read AON_WUC:JTAGCFG
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Glitching JTAG configuration
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1. Reset the microcontroller

2. Wait (glitch offset)

3. Activate glitch MOSFET (glitch width)

4. Check if DIO_23 is high (fast)
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Glitching eFuse check



COSIC

Target: JTAG configuration

• 2,5 s per glitch attempt

• (0,1 s during enumeration)

• CC2640R2F: ~5% success rate

• CC2652R1F: ~1% success rate

Target: eFuse readout/check

• 100 glitch attempts per second

• CC2640R2F: ~10% success rate

• CC2652R1F: ~0,1% success rate
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Debug security bypass results
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DEMO 

22

https://www.forbes.com/sites/lanceeliot/2019/11/30/top-ten-reasons-teslas-cybertruck-windows-shattered-despite-being-unbreakable/
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Verification on a real target

• Extracted the firmware from a Tesla Model 3 key fob

• Recovered an AES key from the firmware (firmware updates?)

• Software can now be analyzed statically and dynamically
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• One AES operation takes 2 + 3 × 𝑟 clock cycles

• Or 32 clock cycles for one AES-128 operation

• The implementation operates on the full AES state

• Side-channel analysis

• Differential fault analysis
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The hardware AES co-processor
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• Determine a suitable leakage model

• 100k traces with known key and plaintext

• Compute all intermediate states

• Perform CPA with all intermediates (HW)

• And all combinations of intermediates (HD)

• HW leakage of plaintext and ciphertext

• SubBytes ⊕ ShiftRows

• r AddRoundKey ⊕ r + 1 AddRoundKey

• r9 AddRoundKey out ⊕ Ciphertext
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HW AES: side-channel analysis
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• In total 100 (x 16) attacks, 100k traces per attack

• 1.5 minutes to acquire 100k traces using segmented memory

• Traces a preprocessed before the attack

• CC2640 @ 24 MHz 

• 12 MHz supplied by CW

• Synchronous sampling

• CC2652 @ 48 MHz

• Asynchronous sampling
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HW AES: Attack results
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• Inject a single byte fault before MixColumns in round 9

• Results in 4 fault ciphertext bytes

• One valid ciphertext and two such faults for each column allow to recover 

the key

• Faults injected using the ChipWhisperer

• Key recovery using Jean Grey - PhoenixAES (and Hulk)

• https://github.com/SideChannelMarvels
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HW AES: Differential Fault Analysis
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• Vulnerability was confirmed by Texas Instruments

• Cannot be resolved without a new hardware revision

• Physical attacks are considered out of scope for this product

• (and any other product for which physical security is not advertised)

• TI PSIRT was easy to reach and responsive
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Texas Instruments response

https://www.ti.com/lit/an/swra739/swra739.pdf
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• Debug security can be easily compromised on CC13xx/CC26xx microcontrollers

• Using basic non-invasive physical attacks

• Most general-purpose microcontrollers are vulnerable to similar attacks 

• This type of attack has been known for >20 years!

• Assume that an attacker will be able to extract the firmware

• Outdated attacker models

• A physical attacker is allowed to attach a debugger

• A physical attacker is not allowed to mount physical attacks
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Conclusion
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github.com/KULeuven-COSIC/SimpleLink-FI


