Repurposing Wireless Stacks for

In-Depth Security Analysis

Jiska Classen
Secure Mobile Networking Lab - SEEMOO COSADE 2022 @ Leuven
TU Darmstadt, Germany April 12

e National Research Center
° for Applied Cybersecurity

., ATHENE Jl

Ll\emergenClTY

Motivation

Wireless Security Research

Security \/
* Analysis ,
> ~. ®
Y g - e Implementation Bugs = \<\/ﬂ\\
- e Specification Issues ~
- -~
- ~
Performance Physical-Layer
Improvements Measurements
e 5G, 6G, UWB... Bugs everywhere! e Distance Bounding

e Device Fingerprinting

Battery almost N

. : / W)
empty, video is A' \
buffering... \p I ‘

Enable new
security mechanisms.

Software-Defined Radios

The ultimate wireless research tool?

o Control over every bit, even the raw
signal sent over the air.

o Experiment with visible light
communication and mmWaves before Maintained, open-source protocol
any consumer device is available. implementations are rare, a lot needs
to be built from scratch.
o Physical-layer only,
o too slow for full-stack integration,
o ...

o Industry will always develop faster
than a few open-source & security
enthusiasts.

2x IEEE CNS '15
ACM VLCS 15
ACM VLCS ‘16

Staying on Track with Technology

o Collaborate with industry?
o Non-disclosure agreements!
— Not everything is publishable,

other researchers cannot build upon previous results (non-public tools)
o Research topics likely restricted...

o Build independent, open tools—but how?

Mobile Devices for
Wireless Research

Research Proprietary Mobile Stacks

Wireless research without software-defined radios?

 Mobile devices have the most interesting stacks.
o Various vendor-specific protocols and additions.

— Research security of mobile stacks!
— Repurpose these stacks for wireless research.

MagicPairing
- >

ACM WiSec’20

Repurposing Mobile Devices

Modify wireless stacks and chips of early adopters.

|\\\\ |

700'1/00/
2012 0000¢/ 27
01017007/
Oitiee 10/
00110101

1

Firmware
Modification

Is this possible at all?

Smartphones are the most
commonly available devices with
new wireless technologies.

Openly available evaluation kits
often lag behind or miss the
full-stack device integration.

Research Framework Status

Wi-Fi & Bluetooth

N (%7

NexMon (Wi-Fi)
InternalBlue (BT)
Broadcom & Cypress
chips

Firmware patching
support even on the
latest Samsung,
iPhone, MacBook,
Raspberry Pi, etc.

LTE

Work in progress
Intel chips
Reverse-engineering
of firmware and
proprietary
management
protocols

Recent European
iPhones

K

Ultra-wideband (UWB)

Work in progress
Apple chips
Reverse-engineering
of firmware

Modern Apple wireless
ecosystem: iPhone,
HomePod, Watch, ...

57

Adding New
Technologies

’
lllllllll

Framework Creation Process

Why do you still not support this device/chip/technology?

Root/jailbreak smartphone.

Extract wireless firmware.
Reverse-engineer firmware. Project fails if
Analyze communication between wireless chip & iOS/Android. this is impossible.

Get code execution on the chip.
Add basic patching capabilities for C/Assembler.
Program hooks that enable overhearing & modifying wireless traffic.

/600’1700y

2000 00¢7 2
“.? 010117001/

Oltjee 10/

00610701

Nyt w-1h
01011700/ =-> S d_&L /T

Oltjoo 10y

0011701} sv. A/ R X

Technology & Chip Selection

o Which technologies matter?
« What exactly cannot be researched with existing tooling?
o Pick early adopters.

Broadcom Chips

AVYEN]

Broadcom and Cypress Chips

e Present in >1 billion of devices.
o Devices are popular, cheap, and easy to buy: various smartphones, evaluation kits

... and the Raspberry Pi.

o Bluetooth and Wi-Fi firmware run on separate ARM cores, slightly different
technologies and firmware update mechanism.

« Firmware patches are temporarily applied into RAM.

« The ROM does not verify firmware patches!

700’1700/
2000 00¢7s 2
01017007
Oltjce 10y
0011101

Cypress?

« Broadcom sold their wireless IoT division to Cypress in 2016.
o IoT = small customers, too expensive to maintain their firmware, build
customized chips, etc.
« Cypress published various datasheets that were Broadcom confidential.
e ...and also some development tools.

GO g|e cypress "broadcom confidential” X § Q

Q Al E News [EImages Maps & Shopping i More Settings Tools

About 416 results (0,45 seconds)

www.cypress.com file » download PDF

BCM43455 Preliminary Data Sheet - Cypress Semiconductor

Nov 5, 2015 — BCM43455 Preliminary Data Sheet. Broadcom®. November 5, 2015 + 43455-
DS109-R. Page 5. BROADCOM CONFIDENTIAL. 43455-DS104- ...

www.cypress.com > file » download v POF

BCM43569 Advance Data Sheet - Cypress Semiconductor

Jan 19, 2016 — BCM43569 Advance Data Sheet. Broadcom®. January 19, 2016 « 43569-
DS109-R. Page 4. BROADCOM CONFIDENTIAL. 43569-DS107-R.

1SXT 110N

o Initially created by Matthias Schulz and Daniel Wegemer.
« Repurpose smartphones as mobile Wi-Fi sniffers in monitoring mode.
o Specifically: Monitoring mode on the Google Nexus 5.

No security research focus!

Wi-Fi sniffing and frame injection.

Measuring channel state information on the wireless physical layer.

Use an IQ buffer to repurpose the smartphone as 2.4GHz software-defined radio.
Enable ARM debugging.

https://qgithub.com/seemoo-lab/nexmon

https://github.com/seemoo-lab/nexmon

External Security Researchers

Published exploits, all building upon NexMon reverse engineering results:
« 2017: Nitay Artenstein, Broadpwn exploit

« 2017: Gal Beniamini working with Google Project Zero, full wireless exploit chain
o« 2019: Hugues Anguelkov working with Quarkslab, re-exploiting similar issues

o
ey 4
fé’%

Why not do our own security research?

Q

Bugs everywhere!

Bluetooth
Framework

Ideal Platform for Security Research

Less focus on support of one specific chip on one specific platform.

Support the newest chips!
— Research requires recent security patches.

Support all operating systems with a focus on mobile devices.
— i0S and macOS support.

= python2 -m internalblue.cli
I AT - AT

YA Y s Y S T)
(NSNS IN S S X 2, VA AT

type <help> for usage information!

[*] Using adb device: Ocfe78fal4081c75 (Nexus 5)
> hexdump --length 0x30 0x200400

Initial InternalBlue Release

[*] 00200400 ff 1b 9d 67 00 00 00 00 069 61 44 65 63 20 31 31 R PR
00200410 20 32 30 31 32 00 18 92 fc 00 3f 1f 00 00 00 00 201|2
00200420 00 00 00 00 0O 00 00 6O 00 00 0O 60 00 00 60 00 SR RS
00200430
> writemem 0x200422 Runtime Debugging!!!
[+] Writing Memory: Written 20 bytes to 0x00200422.
> hexdump --length 0x50 0x200400
[*] 00200400 ff 1b 9d 67 00 00 060 60 09 61 44 65 63 20 31 31 =eeeo|ee--|-aDefc 11
00200410 20 32 30 31 32 00 18 92 fc 00 3f 1f 00 00 00 00 201|2---(--2-]---
00200420 00 00 52 75 6e 74 69 6d 65 20 44 65 62 75 67 67 --Ru|ntim|e De|bugg
00200430 69 6e 67 21 21 21 00 00 0O 00 00 60 00 00 00 00 (ing!|!!--f-c--f----
00200440 00 0A AA 0A A1 Aa A2 AA 40 04 60 06 93 A0 06 6O secelecee|@’
0 File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
> ma® X[E QeassEF I = QQQE
[WTApply a display filter =3 -)
No. Source Destination Protocol Length info

1 HuaweiTe_cO:
2 LgElectr_34:

LgElectr_34:2c:

35 LMP_features_req

3 HuaweiTe_cO:
4 LgElectr_34:
5 HuaweiTe_cO:
6 LgElectr_34:

38 LMP_features_req_ext
38 LMP_features_res_ext
38 LMP_features_req_ext
38 LMP_features_res_ext

7 HuaweiTe_cO:
8 LgElectr_34:
9 HuaweiTe_cO:
10 HuaweiTe_cO:
11 LgElectr_34:
12 HuaweiTe_cO:
13 LgElectr_34:
14 HuaweiTe_cO:

~ Bluetooth BR Link Manager Protocol
@ = TID: transaction initiated by master
0100 111. = Opcode: LMP_features_req (39)

HuaweiTe_cO:1c:be LMP 35 LMP_features_res
LgElectr_34:2c:el LMP

HuaweiTe_cO:1c:be LMP

LgElectr_34:2c:el LMP

HuaweiTe_cO:1c:be LMP

LgElectr_34:2c:el LMP 28 LMP_name_req
HuaweiTe_cO:1c:be LMP 43 LMP_name_res
LgElectr_34:2c:el LMP 28 LMP_detach
LgElectr_34:2c:el LMP 35 LMP_features_req
HuaweiTe_c0:1c:be LMP 35 LMP_features_res
LgElectr_34:2c:el LMP 32 LMP_version_req
HuaweiTe_c0:1c:be LMP 32 LMP_version_res
LgElectr_34:2c:el LMP

38 LMP_features_req_ext

Features: 0x877bffdbfecffebf, 3 slot packets, 5 slot packets, Encr 1
34 fc ef 34 2c e1 24 00 ba c0 1c be ff fo 01 00 4..4,-%

0010 00 00 00 [19 00 00 4f 4e bf fe cf fe db ff 7b - P -0 N- - - {
87 00 00 .

7 Feature Mask (btbrimp.features), 8 bytes

Packets: 67 - Displayed: 67 (100.0%)

profile: Default

Vendor-specific host
controller interface
commands (local)

Modify firmware
(Broadcom)

Link layer
monitor & injection

ACM WiSec’19
ACM MobiSys '19

InternalBlue Now

Monitoring and modification of management traffic.

o Firmware manipulation during runtime.

o Additional projects for firmware diffing, patching in C, emulation, etc.
e ...and it runs on many devices!

T
: l Ele) g - -

Android 6-11 i0S 12-14 Linux (BlueZz) macOS High Sierra-Big Sur
Samsung Galaxy S series + iPhone 6-13 Eval kits + Raspberry Pis MacBooks + iMacs

Google Nexus series

https://qgithub.com/seemoo-lab/internalblue

Leaked Symbols

Cypress WICED Studio 6.2-6.4 accidentally included function and global variable
names for a few development kits.

One of these chips is also contained in the MacBook Pro 2016.

Found this after manually reverse-engineering the Google Nexus 5 firmware for a
couple of months...

REcon’19

Reverse Engineering without Symbols

get |ptr_tp connection_struct()

\
eventually/send_lmp_buffer()
\ y
/
\
7
o /
= -~

vendor_specific_hci_wtf() /

Reverse Engineering with Symbols

thread_Create(ptr, name, prio,
func, 0, 0, stack_size)
diéﬁl’kt() /

blueRF_Rd(addr)

DHM_LMPTx(conn, buff)

LM_LmpInfoTableBPCS

m_handleEvents()

bthci_cmd_vs_HandleSuper_Duper_Peek_Poke()

e i

https:

0x17b4c:
Ox17bde:
0x17b50:
0x17b52:

0x17b56:

Polypyus Bindiffer

Firmware with

Symbols

mm_freeACLBuffer mm_freeACLBuffer
00 28 cmp ro, #0 oxededc: 00 28 cmp ro, #0
02 do beq locret_17b56 oxedede: 02 do beq locret_doe6
08 38 subs ro, #8 0x0doe0: 08 38 subs ro, #8
f2 7 43 b8 b.w mem_Release ox0dee2: f4 f7 f7 bf b.w mem_Release

locret_17b56 locret_doe6

70 47 bx 1r 0x0dee6: 70 47 bx 1r

ithub.com/seemoo-lab/pol us

%‘D Binary Matchers
&

Firmware w/o
Symbols

Very fast binary differ that learns
from a history of binaries and
applies them to other binaries
within seconds.

e Disassemblers (IDA Pro,
Ghidra, etc.) miss ~25% of all
functions in raw binaries.

e Learn history from previously
reverse-engineered firmware or
leaked symbols.

e Works on raw binary format.

https://github.com/seemoo-lab/polypyus

Bluetooth Security

Frankenstein Emulator

770266

Frankenstein: Emulate Bluetooth
firmware with the same speed as in
hardware for realistic full-stack fuzzing.

Linux Host

UART Pseudo e The Linux host can run a full
Terminal Bluetooth stack on a desktop setup.

e Add an xmit_state @ hook to the

e Bluetooth firmware function of
interest, e.g., device scanning,
active connection, ...

e Reattach emulated snapshot with
btattach, enter a similar state on

Snapshot IOI

Fake IO the desktop, and start fuzzing.
Registers e Identified multiple issues that can

] lead to remote code execution.
Air ‘ ‘ Fuzzed Input ‘

https: ithub.com/seemoo-lab/frankenstein USENIX Security '20

https://github.com/seemoo-lab/frankenstein

Interfaces and Protocols

P, Bluetooth
PI‘OprIeta ry Available for: iPhone 6s and later, iPad Air 2 and later,
ProtOCOIS @ iPad mini 4 and later, and iPod touch 7th generation
Impact: A remote attacker may be able to cause arbitrary
Fuzz Protocol H code execution
Handlers Description: An out-of-bounds read was addressed with | |5ter
improved bounds checking. Ltion
Bluetooth Daemon CVE-2020-9838: Dennis Heinze (@ttdennis) of TU R
. Darmstadt, Secure Mobile Networking Lab
Virtual
Connection Pa rtlal_ly Description: A denial of service issue was addressed with
Abstract Chlp improved input validation.
Interaction
CVE-2020-9931: Dennis Heinze (@ttdennis) of TU
Darmstadt, Secure Mobile Networking Lab

Bluetooth Chip

We would like to acknowledge Dennis Heinze (@ttdennis)
of TU Darmstadt, Secure Mobile Networking Lab for their

assistance.

ACM WiSec’20

https: ithub.com/seemoo-lab/toothpicker USENIX WOOT '20

https://github.com/seemoo-lab/toothpicker

Hardware Vulnerability Research

Random Number Generator

« Bluetooth security (authentication, encryption) relies on
secure random numbers.

« Some devices, such as the Samsung Galaxy S8, only
use an insecure pseudo random number generator.
— Security updates for Samsung devices, iPhones and
MacBooks.

Wireless Coexistence

« Bluetooth and Wi-Fi run on separate ARM cores.
« Improper chip separation enables code execution.

— Unpatchable vulnerability, no mentions.

Spectra

Bluetooth

Available for: iPhone 6s and later, iPad Air 2 and later, iPad mini 4
and later, and iPod touch 7th generation

Impact: An attacker in a privileged network position may be able to
intercept Bluetooth traffic

Description: An issue existed with the use of a PRNG with low
entropy. This issue was addressed with improved state
management.

CVE-2020-6616: Jorn Tillmanns (@matedealer) and Jiska Classen
(@naehrdine) of Secure Mobile Networking Lab

USENIX WOOT 20 Escalate
BlackHat USA 20 Privi|ege5

S&P 22

‘ Operating System

UART PCIe

[2 f—>

Limited
Patchram

56U+

2.4:Gle

w=-Fi| iBT

e

UWB

NFCLY

o0
*©®

% Coexistence |»1er.€acea
ZSlaarea\ Covyowe"‘k

Execle

Xig! —»

@ Terminal Shell Edit View Window Help

coexistence — internalblue — 67x38
test@Ptests-MacBook-Pro coexistence % internalblue

7 kol /7 2

KA K Py N Fd d
b TN B T A AT e b N

[S R SPp——— —

type <help> for usage information!
[*] No i0S devices connected
(HEER) './adb' does not exist
[*] No adb devices found.
[*] Wireshark configuration (on Loopback interface): udp.port == 62
604 || udp.port == 62605
[*] Connected to mac
[*] Chip identifier: ©x203a (001.000.058)
[*] Using fw_0x203a.py
[*] Loaded firmware information for BCM4377B3.
[*] Try to enable debugging on H4 (warning if not supported)...
[*] Starting commandLoop for reference <internalblue.macoscore.macO
SCore object at 0x107653610>
[!] H4 Type 7 not supported by macOS Core!
> writeasm @x68cbfc b @xdal23456
[*] Assembler was successful. Machine code (len = 20 bytes) is:
[*] 0068cbfc ©00 fo 00 b8 78 47 fd e7 04 fo 1f e5 56 34 12 da |
‘XG|’V4|
0068ccOc 00 @0 00 09

0068ccl0
[?] Warning: Address 0x0068cbfc (len=0x14) is not inside a RAM sec
tion. Continue? [yes/no]

OMG Wi i reswariig "4
Coexistence on macOS, MBP 2019,/2020 (BCM4377)

D @ # = 98%H) Mon17:47 w= test Q =

Every 2.0s: 1ls tests-MacBook-Pro.local: Mon Jul 6 17:47:33 2020

[2020-07-01_11,55,34.914750]=BCMWLAN Net Roam Failure~status=3,reason=4
[2020-07-01_11,55,36.861684]1=BCMWLAN Net Roam Failure~status=3,reason=4

.

(.O‘."F" ccodn
Mmdice code

~
Mewory access 4o Blvetooth chip--

Y
CQU.Siné code ex 200 in Wg,“:':!

lo
e@e)&oa et

Supporting External Researchers

o Collaboration with University of Brescia on coexistence attacks.
o Collaboration with TU Graz on Bluetooth Low Energy performance measurements.

o External work building upon InternalBlue: ACM EWSN "20

o KNOB, BIAS, Method Confusion

Home v Learn About Bluetooth v Key Attributes v Bluetooth Security v Security v

Bluetooth Security Notices

Publication

Vulnerability Date Details Specifications Affected CVE [NVD]

Exploiting Cross-Transport Key 09/09/2020 SIG Security Notice Core Spec, v4.2t0 5.0 CVE-2020-15802
Derivation

Pairing Method Confusion 05/18/2020 SIG Security Notice Core Spec, v2.1to v5.2 CVE-2020-10134
Bluetooth Impersonation Attacks 05/18/2020 SIG Security Notice Core Spec, v2.1to v5.2 CVE-2020-10135
Key Negotiation of Bluetooth 08/13/2019 SIG Security Notice Core Spec, v4.2,v5.0 and v5.1 CVE-2019-9506
Validation of Elliptic Curve 07/23/2018 SIG Security Notice Core Spec, v2.1to v5.0 CVE-2018-5383

Parameters

Specification-Compliant Attacks?!

Some issues in the Bluetooth specification were so trivial that it might have been
bugdoored on purpose.

"Only mandatory to authenticate the x coordinate but not the y coordinate of
an ECDH curve point during key exchange.”

"Both parties can request to reduce the entropy of the session key from 16
bytes to 1 byte.”

Nobody could test implementations without spending 10-75k€ on an Ellisys
Bluetooth analyzer.

' 4

Simple bugs persist in specifications
if they cannot be tested in practice.

C
e
|
u
la
I
Ba
h seba
n
d
S

LTE & 5G

o Basic over-the-air functionality can already be tested with Osmocom and
OpenAirlnterface.
« Not that many security features added in 5G.

— Different security research focus:

m Integration into iOS/Android telephony frameworks
m Interfaces between iOS/Android and wireless chips

« Fuzzing of the Apple-specific protocol for LTE (ARI) and the generic Qualcomm
protocol for LTE+5G (QMI).
« Wireshark dissector & ARI injector open-sourced.

DIESES SYSTEM IST_

CCCrC3 "20

ESORICS ‘21 aﬂﬂ” ' 1 S_ /

2 [-Al_\-:’r)
PiWwitisit

https: ithub.com/seemoo-lab/aristoteles

@ vessaces

You have 13 new Messa

FaceTime Calendar

=

Camera

https://docs.google.com/file/d/1rnkbrcsMU7psIntUfUWFeOltRIsU4Udi/preview

Ultra-wideband

Ultra-wideband (UWB)

Different frequency band than Wi-Fi and Bluetooth.
— Highspeed, non-interfering data transmission performance!

Supports secure ranging.
— Built-in physical-layer security. o '

A few early adopters: R 1
o iPhone 11+12, HomePod mini, Apple Watch 6, AirTags ’
o Samsung Galaxy Note 20 5G, S21+
o (Google Pixel 6
o Automotive for unlocking cars

Implemented first practical UWB distance-shortening attack.
Firmware analysis done, but firmware is signed...

57 _—= | GhostPeak Paper, USENIX Security ‘22
: —[\° | AirTag Paper, WOOT ‘22

Received 4 bytes! Opcode 9 (Playing Sound) :
Received 4 bytes! Opcode 9 (Playing Sound) ﬂm:m x
Received 4 bytes! Opcode 9 (Playing Sound) Serial TROLOLOLOLOL Firmware s.t.ock
Received 4 bytes! Opcode 9 (Playing Sound)
Received 1 bytes! Opcode 40 (Play Sound Sequ
CLDurianTask init

> opcode: 14 (Set Mutex)

> desiredLatency: ox1

> expectsResponse: ox1

> completeOnPreemption: 0x0

> requiresMutex: 0x0

% CLDurianDevice executeTask

* Sent bytes!

* Received 2 bytes! Opcode @ (Acknowledge)

> ACKed Opcode 14 (Set Mutex)

* Received 7 bytes! Opcode 14 (Set Mutex)
[iPhone::locationd]->
[iPhone::locationd]-> [

* * X K %X X

https://docs.google.com/file/d/1CS3Nt5rQ4ZB3SmUCgx0qfgYe-OLdThD6/preview

MacBook Pro

https://docs.google.com/file/d/1LRVaJdvYGTFZh61b-2J0Wh5j4yhGuJfD/preview

Conclusion

Let’'s build more wireless research frameworks!

o Be the first to look into implementations of new technologies.
« Find high-impact vulnerabilities.
« Open frameworks to enable impactful research.

O https://github.com/seemoo-lab
y Twitter: @naehrdine

DL jiska@bluetooth.lol

