
Repurposing Wireless Stacks for

In-Depth Security Analysis

Jiska Classen
Secure Mobile Networking Lab - SEEMOO
TU Darmstadt, Germany

COSADE 2022 @ Leuven
April 12

Motivation

Wireless Security Research

Performance
Improvements

● 5G, 6G, UWB…

Battery almost
empty, video is
buffering...

Physical-Layer
Measurements

● Distance Bounding
● Device Fingerprinting

Enable new
security mechanisms.

Security
Analysis

● Implementation Bugs
● Specification Issues

Bugs everywhere!

Software-Defined Radios

The ultimate wireless research tool?

● Control over every bit, even the raw
signal sent over the air.

● Experiment with visible light
communication and mmWaves before
any consumer device is available.

● Maintained, open-source protocol
implementations are rare, a lot needs
to be built from scratch.
○ Physical-layer only,
○ too slow for full-stack integration,
○ …

● Industry will always develop faster
than a few open-source & security
enthusiasts.

2x IEEE CNS ’15
ACM VLCS ’15
ACM VLCS ’16

Staying on Track with Technology

● Collaborate with industry?
○ Non-disclosure agreements!

→ Not everything is publishable,
 other researchers cannot build upon previous results (non-public tools)

○ Research topics likely restricted…

● Build independent, open tools—but how?

Mobile Devices for
Wireless Research

Research Proprietary Mobile Stacks

Wireless research without software-defined radios?
● Mobile devices have the most interesting stacks.
● Various vendor-specific protocols and additions.

→ Research security of mobile stacks!
→ Repurpose these stacks for wireless research.

MagicPairing

ACM WiSec ’20

Repurposing Mobile Devices

Modify wireless stacks and chips of early adopters.

Firmware
Modification

● Smartphones are the most
commonly available devices with
new wireless technologies.

● Openly available evaluation kits
often lag behind or miss the
full-stack device integration.

Is this possible at all?

LTE

● Work in progress
● Intel chips
● Reverse-engineering

of firmware and
proprietary
management
protocols

● Recent European
iPhones

Research Framework Status

Wi-Fi & Bluetooth

● NexMon (Wi-Fi)
● InternalBlue (BT)
● Broadcom & Cypress

chips
● Firmware patching

support even on the
latest Samsung,
iPhone, MacBook,
Raspberry Pi, etc.

Ultra-wideband (UWB)

● Work in progress
● Apple chips
● Reverse-engineering

of firmware
● Modern Apple wireless

ecosystem: iPhone,
HomePod, Watch, …

Adding New
Technologies

Framework Creation Process

Why do you still not support this device/chip/technology?

● Root/jailbreak smartphone.
● Extract wireless firmware.
● Reverse-engineer firmware.
● Analyze communication between wireless chip & iOS/Android.
● Get code execution on the chip.
● Add basic patching capabilities for C/Assembler.
● Program hooks that enable overhearing & modifying wireless traffic.

Project fails if
this is impossible.

Technology & Chip Selection

● Which technologies matter?
● What exactly cannot be researched with existing tooling?
● Pick early adopters.

Broadcom Chips

Broadcom and Cypress Chips

● Present in >1 billion of devices.
● Devices are popular, cheap, and easy to buy: various smartphones, evaluation kits

… and the Raspberry Pi.
● Bluetooth and Wi-Fi firmware run on separate ARM cores, slightly different

technologies and firmware update mechanism.
● Firmware patches are temporarily applied into RAM.
● The ROM does not verify firmware patches!

Cypress?

● Broadcom sold their wireless IoT division to Cypress in 2016.
○ IoT = small customers, too expensive to maintain their firmware, build

customized chips, etc.
● Cypress published various datasheets that were Broadcom confidential.
● … and also some development tools.

NexMon

● Initially created by Matthias Schulz and Daniel Wegemer.
● Repurpose smartphones as mobile Wi-Fi sniffers in monitoring mode.
● Specifically: Monitoring mode on the Google Nexus 5.

No security research focus!
● Wi-Fi sniffing and frame injection.
● Measuring channel state information on the wireless physical layer.
● Use an IQ buffer to repurpose the smartphone as 2.4GHz software-defined radio.
● Enable ARM debugging.

https://github.com/seemoo-lab/nexmon

https://github.com/seemoo-lab/nexmon

External Security Researchers

Published exploits, all building upon NexMon reverse engineering results:
● 2017: Nitay Artenstein, Broadpwn exploit
● 2017: Gal Beniamini working with Google Project Zero, full wireless exploit chain
● 2019: Hugues Anguelkov working with Quarkslab, re-exploiting similar issues

Why not do our own security research?

Bugs everywhere!

Bluetooth
Framework

Ideal Platform for Security Research

● Less focus on support of one specific chip on one specific platform.

● Support the newest chips!
→ Research requires recent security patches.

● Support all operating systems with a focus on mobile devices.
→ iOS and macOS support.

Vendor-specific host
controller interface
commands (local)

Initial InternalBlue Release

Modify firmware
(Broadcom)

Link layer
monitor & injection

ACM WiSec ’19
ACM MobiSys ’19

InternalBlue Now

● Monitoring and modification of management traffic.
● Firmware manipulation during runtime.
● Additional projects for firmware diffing, patching in C, emulation, etc.
● … and it runs on many devices!

https://github.com/seemoo-lab/internalblue

Android 6–11
Samsung Galaxy S series +
 Google Nexus series

iOS 12–14
iPhone 6–13

Linux (BlueZ)
Eval kits + Raspberry Pis

macOS High Sierra–Big Sur
MacBooks + iMacs

Leaked Symbols

● Cypress WICED Studio 6.2–6.4 accidentally included function and global variable
names for a few development kits.

● One of these chips is also contained in the MacBook Pro 2016.
● Found this after manually reverse-engineering the Google Nexus 5 firmware for a

couple of months…

REcon ’19

Reverse Engineering without Symbols

get_ptr_to_connection_struct()

eventually_send_lmp_buffer()

vendor_specific_hci_wtf()

Reverse Engineering with Symbols

blueRF_Rd(addr)

bthci_cmd_vs_HandleSuper_Duper_Peek_Poke()

DHM_LMPTx(conn, buff)

LM_LmpInfoTableBPCS

diag_logLcpPkt()

lm_handleEvents()

main()

thread_Create(ptr, name, prio,
func, 0, 0, stack_size)

Polypyus Bindiffer

Very fast binary differ that learns
from a history of binaries and
applies them to other binaries
within seconds.
● Disassemblers (IDA Pro,

Ghidra, etc.) miss ~25% of all
functions in raw binaries.

● Learn history from previously
reverse-engineered firmware or
leaked symbols.

● Works on raw binary format.

Firmware with
Symbols

Firmware w/o
Symbols

https://github.com/seemoo-lab/polypyus

 mm_freeACLBuffer
0x17b4c: 00 28 cmp r0, #0
0x17b4e: 02 d0 beq locret_17b56
0x17b50: 08 38 subs r0, #8
0x17b52: f2 f7 43 b8 b.w mem_Release
 locret_17b56
0x17b56: 70 47 bx lr

 mm_freeACLBuffer
0x0d0dc: 00 28 cmp r0, #0
0x0d0de: 02 d0 beq locret_d0e6
0x0d0e0: 08 38 subs r0, #8
0x0d0e2: f4 f7 f7 bf b.w mem_Release
 locret_d0e6
0x0d0e6: 70 47 bx lr

Binary Matchers

https://github.com/seemoo-lab/polypyus

Bluetooth Security

Frankenstein Emulator

Frankenstein: Emulate Bluetooth
firmware with the same speed as in
hardware for realistic full-stack fuzzing.Linux Host

Air

Modem

UART

Fuzzed Input

Fake IO
Registers

Pseudo
Terminal

S
na

ps
ho

t
● The Linux host can run a full

Bluetooth stack on a desktop setup.
● Add an xmit_state hook to the
● Bluetooth firmware function of

interest, e.g., device scanning,
active connection, …

● Reattach emulated snapshot with
btattach, enter a similar state on
the desktop, and start fuzzing.

● Identified multiple issues that can
lead to remote code execution.

https://github.com/seemoo-lab/frankenstein USENIX Security ’20

https://github.com/seemoo-lab/frankenstein

Interfaces and Protocols

ACM WiSec ’20
USENIX WOOT ’20

https://github.com/seemoo-lab/toothpicker

Bluetooth Chip

Bluetooth Daemon

Proprietary
Protocols

Partially
Abstract Chip

Interaction

Virtual
Connection

Fuzz Protocol
Handlers

https://github.com/seemoo-lab/toothpicker

Hardware Vulnerability Research

Wireless Coexistence
● Bluetooth and Wi-Fi run on separate ARM cores.
● Improper chip separation enables code execution.

→ Unpatchable vulnerability, no mentions.

Bluetooth

Available for: iPhone 6s and later, iPad Air 2 and later, iPad mini 4
and later, and iPod touch 7th generation

Impact: An attacker in a privileged network position may be able to
intercept Bluetooth traffic

Description: An issue existed with the use of a PRNG with low
entropy. This issue was addressed with improved state
management.

CVE-2020-6616: Jörn Tillmanns (@matedealer) and Jiska Classen
(@naehrdine) of Secure Mobile Networking Lab

Random Number Generator
● Bluetooth security (authentication, encryption) relies on

secure random numbers.
● Some devices, such as the Samsung Galaxy S8, only

use an insecure pseudo random number generator.
→ Security updates for Samsung devices, iPhones and
MacBooks.

Operating System

UART PCIe

Limited
Patchram

USENIX WOOT ’20
BlackHat USA ’20
S&P ‘22

Escalate
Privileges

Coexistence on macOS, MBP 2019/2020 (BCM4377)

Supporting External Researchers

● Collaboration with University of Brescia on coexistence attacks.
● Collaboration with TU Graz on Bluetooth Low Energy performance measurements.

ACM EWSN ’20● External work building upon InternalBlue:
○ KNOB, BIAS, Method Confusion

Specification-Compliant Attacks?!

● Some issues in the Bluetooth specification were so trivial that it might have been
bugdoored on purpose.

“Only mandatory to authenticate the x coordinate but not the y coordinate of
an ECDH curve point during key exchange.”
“Both parties can request to reduce the entropy of the session key from 16
bytes to 1 byte.”

● Nobody could test implementations without spending 10–75k€ on an Ellisys
Bluetooth analyzer.

Simple bugs persist in specifications
if they cannot be tested in practice.

Cellular Basebands

LTE & 5G

● Basic over-the-air functionality can already be tested with Osmocom and
OpenAirInterface.

● Not that many security features added in 5G.
→ Different security research focus:

■ Integration into iOS/Android telephony frameworks
■ Interfaces between iOS/Android and wireless chips

● Fuzzing of the Apple-specific protocol for LTE (ARI) and the generic Qualcomm
protocol for LTE+5G (QMI).

● Wireshark dissector & ARI injector open-sourced.

CCC rC3 ’20
ESORICS ‘21

https://github.com/seemoo-lab/aristoteles

Demo: Fuzzing ARI

https://docs.google.com/file/d/1rnkbrcsMU7psIntUfUWFeOltRIsU4Udi/preview

Ultra-wideband

Ultra-wideband (UWB)

● Different frequency band than Wi-Fi and Bluetooth.
→ Highspeed, non-interfering data transmission performance!

● Supports secure ranging.
→ Built-in physical-layer security.

● A few early adopters:
○ iPhone 11+12, HomePod mini, Apple Watch 6, AirTags
○ Samsung Galaxy Note 20 5G, S21+
○ Google Pixel 6
○ Automotive for unlocking cars

● Implemented first practical UWB distance-shortening attack.
● Firmware analysis done, but firmware is signed…

GhostPeak Paper, USENIX Security ‘22
AirTag Paper, WOOT ‘22

Demo: AirTechno

https://docs.google.com/file/d/1CS3Nt5rQ4ZB3SmUCgx0qfgYe-OLdThD6/preview

Demo: Over-the-Air Distance Shortening

https://docs.google.com/file/d/1LRVaJdvYGTFZh61b-2J0Wh5j4yhGuJfD/preview

Conclusion

Let’s build more wireless research frameworks!

● Be the first to look into implementations of new technologies.
● Find high-impact vulnerabilities.
● Open frameworks to enable impactful research.

Q&A
 https://github.com/seemoo-lab

 Twitter: @naehrdine

 jiska@bluetooth.lol

