
Provable Secure Software Masking
in the Real-World

Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and Ingrid Verbauwhede

COSADE 2022



Introduction
• We looked at open-source first order SW masked AES 

implementations and evaluated them for:
• Side-channel leakage
• Timing
• Randomness requirements

2

Presenter Notes
Presentation Notes
-We evaluate the basic benchmarks which one would expect to meet when designing a masked implementation. -No hiding countermeasures, only masking-selection criterio: Code needed to be portable to cortex-M4/M3



What we found
• Key recovery with first order attack
• Incorrect TRNG instantiations
• Benchmarking issues 
• Software bugs 

3



What this work is not

• An attack on the underlying theory of the masking schemes
• An in-depth security evaluation of the targeted schemes
• A critique aimed at a specific person or publication
• An attempt to discourage open-sourcing code

4



Disclaimers

5



Side channel evaluation

6

• Performed first order TVLA and CPA
• Same target for every evaluation: NewAE STM32F415
• Sampling rate: 200MS/s, 20MHz low-pass filter 

Presenter Notes
Presentation Notes
All implementations ran on same target : NewAE STM32F415



TVLA

• All implementations compiled using given makefile
• Only inserted triggers
• We show only first order leakage 
• 10k traces

7



TVLA results

8



9



TVLA: Inner product masking

10



CPA
• All implementations compiled using given makefile
• Only inserted triggers
• Textbook CPA: 

• SBOX in or output
• HW leakage, or single bit when bitsliced
• 20k traces

11



CPA results

12



13



CPA: inner product masking

14



Root cause analysis

15

All the AES you need on Cortex-M3 and M4

[On the cost of lazy engineering for masked software implementations]

Presenter Notes
Presentation Notes
-Reason we took this one: manageable code size and the implementations where in ASM!-Will be different for others with the slightest compiler change-Some of the other schemes have such a long implementation time that it becomes impractical to do this. -explain the HW leakage of probably most of these implementations



Timing results

• All timings were done on STM32F415
• We set the system clock frequency at 24MHz and 168MHz 
• Disabled caches
• Compiled with the provided make file 
• Set the security order to the one used in the original paper

16

X3.6

X1.4



TRNG polling

17

x7

x1.6



Timing evaluation

18

Presenter Notes
Presentation Notes
-Point to some implementations being incredibly slow-Both of the timing mismatches are caused by TRNG issues-Explain where the yellow implementations come from



All the AES you need

• Uses STM32F4 TRNG
• Issue: misconfigured TRNG polling

19



Side-channel masking with PRNG

20

https://eprint.iacr.org/2019/1106.pdf



Recommendations

• Describe the side-channel setup in detail
• Perform a convincing side-channel leakage assessment
• List the randomness requirement of the masking scheme
• Benchmark the randomness sources
• Use a realistic benchmarking platform
• Provide all relevant platform settings
• Document the toolchain and compiler settings 

21



Conclusion

• A more thorough side-channel evaluation of software masking 
schemes should be required

• This work was only made possible by opensourcing of the 
implementations

• Academic code should be open sourced, but should also be checked 
before reuse

22


	Provable Secure Software Masking�in the Real-World
	Introduction
	What we found
	What this work is not
	Disclaimers
	Side channel evaluation
	TVLA
	TVLA results
	Slide Number 9
	TVLA: Inner product masking
	CPA
	CPA results
	Slide Number 13
	CPA: inner product masking
	Root cause analysis
	Timing results
	TRNG polling
	Timing evaluation
	All the AES you need
	Side-channel masking with PRNG
	Recommendations
	Conclusion

