Provable Secure Software Masking
in the Real-World

Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and Ingrid Verbauwhede

COSADE 2022

Introduction

* We looked at open-source first order SW masked AES

implementations and evaluated them for:
* Side-channel leakage
* Timing
 Randomness requirements

Paper title

Published venue

masking method

Provably Secure Higher-Order Masking of AES CHES 2010 boolean
Higher order masking of look-up tables Eurocrypt 2014 | boolean
All the AES You Need on Cortex-M3 and M4 SAC 2016 boolean
Consolidating Inner Product Masking Asiacrypt 2017 | inner product
First-Order Masking with Only Two Random Bits CCS-TIS 2019 boolean
Side-channel Masking with Pseudo-Random Generator | Eurocrypt 2020 | boolean
Detecting faults in inner product masking scheme JCEN 2020 inner product
TCHES 2021 boolean

Fixslicing AES-like Ciphers

Presenter Notes
Presentation Notes
-We evaluate the basic benchmarks which one would expect to meet when designing a masked implementation.
-No hiding countermeasures, only masking
-selection criterio: Code needed to be portable to cortex-M4/M3

What we found

* Key recovery with first order attack®
* Incorrect TRNG instantiations

* Benchmarking issues @

e Software bugs @

Paper title

Published venue

masking method

Provably Secure Higher-Order Masking of AES CHES 2010 boolean

Higher order masking of look-up tables Eurocrypt 2014 | boolean

All the AES You Need on Cortex-M3 and M4 SAC 2016 boolean
Consolidating Inner Product Masking Asiacrypt 2017 | inner product

First-Order Masking with Only Two Random Bits CCS-TIS 2019 boolean

® ® ® Sidechannel Masking with Pseudo-Random Generator | Eurocrypt 2020 | boolean
Detecting faults in inner product masking scheme JCEN 2020 inner product

@ Fixslicing AES-like Ciphers TCHES 2021 boolean

What this work is not

* An attack on the underlying theory of the masking schemes
* An in-depth security evaluation of the targeted schemes

A critiqgue aimed at a specific person or publication

* An attempt to discourage open-sourcing code

Disclaimers

» Side-channel masking with PRG (https://github.com/coron/htable/)

We do not claim that in practice the implementation would be secure against a t-th order attack. Namely
the implementation is only provided for illustrative purpose, and timing comparisons. Obtaining a secure
implementation would require to carefully examine the assembly code. In particular one should make
sure that no two shares of the same variable are stored in the same register.

* Fixslicing AES-like ciphers (https://github.com/aadomn/aes)

/A\ B This masking scheme was mainly introduced to achieve first-order masking while limiting the amount of
randomness to generate. Please be aware that other first-order masking schemes provide a better security level. Note
that no practical evaluation has been undertaken to assess the security of our masked implementations! M8 A\

Side channel evaluation

* Performed first order TVLA and CPA
* Same target for every evaluation: NewAE STM32F415

e Sampling rate: 200MS/s, 20MHz low-pass filter

Target
STM32F4

Presenter Notes
Presentation Notes
All implementations ran on same target : NewAE STM32F415

Sampled signal

TVLA

* All implementations compiled using given makefile

* Only inserted triggers
* We show only first order leakage

e 10k traces

50

All The AES You Need: bitsliced (mean trace)

T-Statistic

5000

10000

15000

20000

25000

30000

100

—100

All The AES You Need: bitsliced (t-test)

5000

10000

15000

20000

25000

30000

7

TVLA results

Sampled signal Sampled signal

Sampled signal

[2%}
L
=]

%]
=]
=]

=1
L
(=]

100

L
=]

250

200

150

100

50

250

200

150

100

50

All The AES You Need: bitsliced masked {mean trace)

T-Statistic

a 20000 40000 /0000 80000 100000 120000 140000

Bitsliced AES masked with two random bits (mean trace)

T-Statistic

a 10000 20000 30000 40000 50000 60000 VOOOO

Fully Fixed Sliced masked with two random bits (mean trace)

T-Statistic

a 10000 20000 30000 40000 50000 /0000 70000

All The AES You Need: bitsliced masked (t-test)

100

] 20000 40000 60000 80000 100000 120000 140000

Bitsliced AES masked with two random bits (t-test)

100

0 10000 20000 30000 40000 50000 GOOOO 70000

Fully Fized Sliced masked with two random bits (t-test)

100

—50

=100

] 10000 20000 30000 40000 50000 B0000 70000

Sampled signal Sarnpled signal

sampled signal

1Y)
W
=]

(2]
=]
=]

150

100

50

250

200

150

100

50

250

200

150

100

50

Rivain-Prouff countermeasure (two shares) (mean trace)

0.0 0.2 0.4 0.6 0.8 1.0
1e6

Randomised htable (two shares) (mean trace)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
17

Rivain-Prouff countermeasure, with FLR, mprgmat (two shares) (mean trace)

le6

T-Statistic

T-Statistic

T-Statistic

Rivain-Prouff countermeasure (two shares) (t-test)

0.0 0.2 0.4 0.6 0.8 1.0

Randomised htable (two shares) (t-test)

40
20
o
=20
-40
0.0 0.2 0.4 0.6 0.8 1.0 1.2
le?

Rivain-Prouff countermeasure, with FLR, mprgmat {two shares) (t-test)

100

A
g

leb

TVLA: Inner product masking

Sampled signal

Sampled signal

[%)
L
f=]

et [4}
Ln [=]
= (=]

ot
=
=

P
Ln
=]

=t P
19,1 =
= =]

et
(=
=]

i
=

=

Ln
=

=

Detecting taults in inner product masking scheme (mean trace}

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
le?

Consolidating Inner Product Masking (mean trace)

Samples 1led

T-Statistic

T-Statistic

20

10

=]

=10

Detecting taults in inner product masking scheme (t-test)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
la7

Consolidating Inner Product Masking (t-test)

o D e B L L T T e et R e e L e T Y

0 1 2 3 4 5 6 7
Samples lehk

10

CPA

* All implementations compiled using given makefile
* Only inserted triggers

* Textbook CPA:
* SBOX in or output
* HW leakage, or single bit when bitsliced
e 20k traces

All The AES You Need: hitsliced (first round attack) All The AES You Need: bitsliced (last round attack)

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

o
L
=
o
w
o

o
]

v
e
]
[

e
MJ
=
Q
[,
=]

et
(%]

Correlation coefficient
= =] ;
i —t
= w
Correlation coefficient

e

o

w

[= =
=
(=]

o
wn

o

(]

=]
o
o
o=

11

CPA results

All The AES You Need: bitsliced masked (first round attack)

Caorrelation coefficient Correlation coefficient

Caorrelation coefficient

0.30

0.25

0.20

0.135

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0 2500 5000 7500 10000 12500 15000 17500 20000
Bitsliced AES masked with two random bits (first round attack)
0 2500 5000 7500 10000 12500 15000 17500 20000
Fully Fixed Sliced masked with two random bits (first round attack)
] 2500 5000 Ta00 10000 12500 15000 17300 20000

Correlation coefficient

Caorrelation coefficient

Correlation coefficient

0.05

0.00

0.05

0.00

0.0%

0.00

All The AES You Need: bitsliced masked (last round attack)

0 2500 5000 7500 10000 12500 15000 17500 20000
Bitsliced AES masked with two random bits (last round attack)
0 2500 5000 7500 10000 12500 15000 17500 20000
Fully Fixed Sliced masked with two random bits (last round attack)
e e
0 2500 5000 7500 10000 12500 15000 17500 20000

12

0.30
0.25
0.20
0.15

0.10

Carrelation coefficient

0.05

0.00

0.30
0.25
0.20
015
0.10

0.05

Carrelation coefficient

0.00

Correlation coefficient
= = = =
hok B o o

=
(=]

Rivain-Prouff countermeasure (two shares) (first round attack)

0 2300 2000 7500 10000 12500 15000 17500 20000

Randomised htable (two shares) (first round attack)

a 2500 5000 7500 10000 12500 15000 17500 20000

Rivain-Prouff countermeasure, with FLR, mprgmat (twa shares) (first round attack)

F

0 2500 5000 7500 10000 12500 15000 17500 20000

Correlation coefficient

Correlation coefficient

Correlation coefficient

0.30
0.25
0.20
0.15
0.10
0.0%

0.00

0.30
0.25
0.20
0.13
0.10
0.0%

0.00

0.30
0.25
0.20
0.15
0.10
0.05

0.00

Rivain-Prouff countermeasure (two shares) (last round attack)

0 2500 2000 7500 10000 12500 15000 17500 20000

Randomised htable {(two shares) (last round attack)

0 2500 000 7500 10000 12500 15000 17500 20000

Rivain-Prouff countermeasure, with FLR, mprgmat (two shares) (last round attack)

"] 2500 5000 75000 10000 13500 15000 17500 20000

13

CPA: inner product masking

Correlation coefficient

Correlation coefficient

Detecting faults in inner product masking scheme (two shares, k=1) (first round attack)

0.25

0.20

0.15

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0

2500

5000

7500 10000 12500

15000

17500

20000

Consolidating Inner Product Masking (two shares) (first round attack)

0

2500

3000

T500 10000 12500
Number of traces

15000

17500

20000

Correlation coefficient

Correlation coefficient

Detecting faults in inner product masking scheme (two shares, k=1) (last round attack)
0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05%

0.00

0 2500 5000 7500 10000 12500 15000 17500 20000
Consolidating Inner Product Masking (two shares) (last round attack)
0 2500 5000 7500 10000 12500 15000 17500 20000

Number of traces

14

Root cause analysis

All the AES you need on Cortex-M3 and M4

1481 eor rii, 7, rii //Ezec y8 = 0 ~ zb; into ril
1482 eor 19, r6, ril //Exec y3 = y5 A y8; into r9
1483 eor r2, r7, 12 //Ezec y9 = 0 ~ z3; into r2
1484 str ri11, [sp, #100] //Store r11/y8 on stack
1485 str r8, [sp, #96 1 //Store r8/y10 on stack
1486 str.w r5, [sp, #92 1 //Store r5/y20 on stack

Unicorn Emulator 1487 eor ri1l, rb, r2 //Ezec y11 = y20 ~ y9; into 71l
1488 eor r8, r8, rii //Exzec y17 = y10 -~ yi11; into r8
1480 eor r0, 10, rit //Exec y16 = t0 ~ yi1; into 70
1490 str r8, [sp, #88 1 //Store r8/y17 on stack
1401 eor rh, rd4, rii //Exec y7 = a7 ~ yl1; into rs
1402 ldr r8, [sp, #1496]1 //Ezec t2 = rand() / 2; into r8
1403 str 1r9, [sp, #84] //Store r9/y3 on stack
1404 eor 1ri10, rio0, r8 //Exzec ul = w0 ~ t2; into r10
1405 eor ri, ri0, ri //Ezec w8 = ul -~ u2; into ri
1496 eor r3, ri, r3 //Ezec ub5 = u3 ~ u4; into 73
1407 eor r3, 1r3, ri4 //Exec t2m = ub -~ u6; into r3
1408 and ri1, r9, ri2 //Ezec u0 = y3 & y6; into rl
1400 ldr r10, [sp, #1112] //Load y6m into 710
1500 str r12, [sp, #80 1 //Store r12/y6 on stack
1501 and ri14, r9, rio0 //Ezec u2 = y3 8 y6m; into 714
1502 ldr r9, [sp, #120] //Load y3m into r9) IV [y?)m b yg}
1503 and ri12, r9, ri2 //Ezec uf = y3m & y6; into 712

[On the cost of lazy engineering for masked software implementations] 15

Presenter Notes
Presentation Notes
-Reason we took this one: manageable code size and the implementations where in ASM!
-Will be different for others with the slightest compiler change
-Some of the other schemes have such a long implementation time that it becomes impractical to do this.
-explain the HW leakage of probably most of these implementations

Timing results

All timings were done on STM32F415

Disabled caches

Compiled with the provided make file

We set the system clock frequency at 24MHz and 168MHz

Set the security order to the one used in the original paper

cycles randomness
Implementation (measured) | (RNG/PRNG) | clock frequency
. ATS Van N e A " 17.5k 328/- 24 MHz
All the AES You Need on Cortex-M3 and M4 69 8K 398 /- 163 Mz
et Order Macking w e - 6.8k 2/- 24 MHz
First-Order Masking with Only Two Random Bits 9Tk o S N

TRNG polling

cycles randomness
Implementation (measured) | (RNG/PRNG) | clock frequency
- . NI . 17.5k 328 /- 24 MHz
All the AES You Need on Cortex-M3 and M4 53 Rk 398/ 168 Mz
. e Meacking e : 6.8k 2/- 24 MHz
First-Order Masking with Only Two Random Bits I Fk 3 TR
platform function word length|cycles| clock frequency
. 32 bit 27 24 MHz
polling opencm3 32 bit | 147 168 MHz
STM32F415 i <semblv 32 bit 21 24 MHz
Cortex-M4 |~ POTHIS asSCIUbLy 32 bit | 147 | 168 MHz > X7
o .- 64 bit 39 24 MHz
PRNG RorShift 96 5163 G5 M| b XL6
LPC55569 i <semblv 32 bit 104 25 MHz
Cortex-M33| ~ POHINIS a55CHIDY 32 bit | 361 | 150 MHz
SAM Dbx di | heet 32 bit 84 24 MHz
Cortex-M4 |according to datashee EORRT: 0 T30 Mz

Timing evaluation

randomness
Implementation cycles measured | cycles reported | (RNG/PRNG) | clock frequency
All the AES You Need on Cortex-M3 and M4 328 /- 24 MHz
First-Order Masking with Only Two Random Bits 2/- 24 MHz
Fixslicing AES-like Ciphers : 2/- 24 MHz
Provably Secure Higher-Order Masking of AES (n=3) 651k 20.6M* 2880/~ 24 MHz
Higher order masking of look-up tables (n=3, random- 9.099M - 164,160 /- 24 MHz
ized table)
Side-channel Masking with Pseudo-Random Generator 3.608M 12M* 52/5120 24 MHz
(n=3, multiple PRG, secmultFLR)
Consolidating Inner Product Masking 819k - 1632/- 24 MHz
Detecting faults in inner product masking scheme (n=2, 1.650M - 2432 /- 24 MHz

k=1)

18

Presenter Notes
Presentation Notes
-Point to some implementations being incredibly slow
-Both of the timing mismatches are caused by TRNG issues
-Explain where the yellow implementations come from

All the AES you need

* Uses STM32F4 TRNG
* Issue: misconfigured TRNG polling

Fix waiting until RNG is ready
¥ public

f) Ko- committed on Jul 12, 2020
Showing 1 changed file with 1 addition and 1 deletion.

v 2 Al aesl2B8ctrbsmasked/aes_128 ctr_bs_masked.s E]

g @@ =-1277,7 +1277,7 @@ encrypt_blocks: //expect p in r&, RNG_SR in rl12, AES_bsconst in rild
generate_random:

ldr r6, [ri2]
tst re, r7

S bne generate_random //wait until RNG_SR == RNG_SR_DRDY

+ beq generate_random //wait until RNG_SR == RNG_SR_DRDY
ldr.w r6, [r5]
str ré, [r3, r4, 1sl #2]

subs r4, #1

1 parent 9179S5d8

Browse files

commit 918d446f84b26eb84cB111d680a279b01217a580

Unified

Split

19

randomness

Implementation cycles measured | cycles reported | (RNG/PRNG) | clock frequency
Provably Secure Higher-Order Masking of AES (n=3) 651k 20.6M* 2880/~ 24 MHz
Side-channel Masking with Pseudo-Random Generator 3.608M 12M* 52/5120 24 MHz

(n=3, multiple PRG, secomultFLR)

5.4 Concrete Implementation

We have implemented our constructions for AES in C, on a 44 MHz ARM-Cortex M3 processor.
The processor is used in a wide variety of products such as passports, bank cards, SIM cards, secure
elements, etc. The embedded TRNG module can run in parallel of the CPU, but it is relatively
slow: according to our measurements on emulator, it outputs 32 bits of random in approximately
6000 cycles. Our results, obtained by running the code on emulator, are given in Table 10, and are

compared with the classical Rivain-Prouff countermeasure.

We see that the most efficient countermeasure is the SecMultFLR algorithm with multiple
PRGs, using the 3-wise independent PRG. For n = 3 and n = 4 we obtain a 52% and 61% speedup
respectively, compared to Rivain-Prouff. We provide the source code in [Cor19b].

https://eprint.iacr.org/2019/1106.pdf

20

Recommendations

* Describe the side-channel setup in detail

* Perform a convincing side-channel leakage assessment

* List the randomness requirement of the masking scheme
* Benchmark the randomness sources

* Use a realistic benchmarking platform

* Provide all relevant platform settings

* Document the toolchain and compiler settings

Conclusion

* A more thorough side-channel evaluation of software masking
schemes should be required

* This work was only made possible by opensourcing of the
implementations

* Academic code should be open sourced, but should also be checked
before reuse

	Provable Secure Software Masking�in the Real-World
	Introduction
	What we found
	What this work is not
	Disclaimers
	Side channel evaluation
	TVLA
	TVLA results
	Slide Number 9
	TVLA: Inner product masking
	CPA
	CPA results
	Slide Number 13
	CPA: inner product masking
	Root cause analysis
	Timing results
	TRNG polling
	Timing evaluation
	All the AES you need
	Side-channel masking with PRNG
	Recommendations
	Conclusion

