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Context

• Huge money in quantum computing is being invested by
computer industry giants like Google, IBM, Intel and other
companies like D-Wave, IonQ.

• The most powerful universal gate quantum computer: 160
physical qbits from IonQ.

• Bristlecone, Google’s quantum processor currently works with
72 physical qubits.

• How many qubits do we need to break RSA-2048??

• NIST process for standardization of Post-Quantum
Cryptography (PQC) is underway.

• Started in December 2017, 3-5 years analysis period, followed
by 2 years for draft standards.
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NIST PQC Call

• Signatures

• Encryption

• Key-establishments (KEMs)

• Selection Criteria:
• Security
• Performance
• Backward compatibility
• Perfect forward secrecy
• · · ·
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NIST PQC Call

Type Signatures KEM/Encryption Overall

Lattice-based 5 23 28
Code-based 3 17 20
Multivariate 8 2 10
Hash-based 3 0 3

Isogeny-based 0 1 1
Others 2 5 7

Total 21 48 69
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This Work

• Fault Attack on 4 Lattice-based schemes: NewHope, Frodo,
Kyber, Dilithium

• Fault Vulnerability: Usage of nonces in the sampling
operation.

• Fault Model: Instruction Skips on the ARM Cortex-M4.

• Number of faults: 1-5.

• Nonce-reuse attacks are not new... Well known in the context
of ECC.

• Impact:

• Key Recovery Attack
• Message Recovery Attack in CCA-secure KEM schemes in

Man In The Middle (MITM) setting
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Learning With Errors (LWE) problem

• Let A ∈ Zn×nq and S,E ∈ Znq ← Dσ

• T = (A× S + E) ∈ Znq
• Search LWE: Given several pairs (A,T), find S.

• Decisional LWE: Distinguish between valid LWE pairs (A,T)
from uniformly random samples in (Zn×nq × Znq ).

• Computations over matrices and Vectors were mapped to
polynomials in the more efficient variants of LWE such as
Ring-LWE (RLWE) and Module-LWE (MLWE).

• Ring LWE: Rq = Zq[X]/(Xn + 1) with A,S,E ∈ Rq.

• Module LWE: Rk×l
q = (Zq[X]/(Xn + 1))k×l with A ∈ Rk×`

q ,

S ∈ R`
q, E ∈ Rk

q .

• Learning With Rounding (LWR): Error deterministically
generated by rounding to a lower modulus.
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The Importance of Error

• Error component E is essential to hardness guarantees

• Without E, LWE instance becomes solvable modular linear
equations T = A ∗ S

• An attack reducing (or bounding) E could potentially
compromise the security of the scheme

• Several insecure instantiations of LWE:

• Distribution always outputs zero error
• Distribution always outputs an error in the interval

z +
[
− 1

2
,

1

2

)
• Sum of a specific set of error co-ordinates is always zero
• Secret is same as the Error
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Fault Vulnerability

• Certain amount of randomness required to generate S and E.

• The secret S and error E are sampled from the same
distribution and utilize the same functions for sampling.

• S = Sample(σS), E = Sample(σE)

• Ideally, for every fresh instance of Sample, one should use a
newly generated random seed.

• But, we observed...

• S = Sample(σ, nonceS), E = Sample(σ, nonceE)

• In need for efficiency, the same seed appended with one byte
of nonce is used across multiple instances of the Sample
function.

• If this nonce could be faulted to realize reuse, then same seed
is used to sample both S and E resulting in S = E.
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Fault Vulnerability

• Assume a Ring LWE instance

T = A× S + E ∈ Rq

• Inject fault such that E = S.

• Ring-LWE instance is faulted to:

T = A× S + S ∈ Rq

• Modular linear system of equations with n equations and n
unknowns which is trivially solvable.

• Applies to all variants of LWE (General LWE, Ring-LWE,
Module-LWE)
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Fault Vulnerability

• These faulty LWE instances can be used to perform key
recovery and message recovery attacks.

• Key recovery attacks are performed by faulting the key
generation procedure.

• Key recovery attacks applicable to NewHope, Frodo, Kyber
and Dilithium.

• Message recovery attacks are performed by faulting the
encapsulation procedure.

• Message recovery attacks only applicable over NewHope,
Frodo and Kyber KEM schemes.

13 / 43
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NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)

• Based on RLWE problem

• NewHope-CPA KEM is derived from the NewHope-CPA
Public Key Encryption (PKE) scheme.

• Further, NewHope-CCA KEM is obtained through application
of FO transformation on NewHope-CPA KEM.

• S and E are generated using a Sample operation

• Sample takes input as a 32-byte seed and 1-byte of nonce

• It uses SHAKE256 (SHA-3 family) as an Extendable Output
Function (XOF) to deterministically generate more random
bits and subsequently generate S and E.

• In NIST submission, designers use nonce=(0,1).

15 / 43



NEWHOPE CPA-PKE

1: procedure NEWHOPE.CPAPKE.GEN()

2:
...

3: â← GenA(publicseed)
4: s← PolyBitRev(Sample(noiseseed, 0))
5: ŝ = NTT(s)
6: e← PolyBitRev(Sample(noiseseed, 1))
7: ê = NTT(e)
8: b̂ = â ∗ ŝ + ê
9: Return

(pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(s))
10: end procedure
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Frodo KEM

• Frodo, similar to NewHope is a suite of KEM
(NewHope-CPA/CCA-KEM) based on the General LWE
problem.

• We identify the same vulnerable usage of nonce for sampling
S and E.
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Frodo CPA-PKE

1: procedure FRODO.CPAPKE.GEN()

2: seedA ← U({0, 1}lenA)
3: A← Frodo.Gen(seedA) ∈ Zn×nq

4: seedE ← U({0, 1}lenE )
5: S← Frodo.SampleMatrix(seedE, 1) ∈ Zn×n̄q

6: E← Frodo.SampleMatrix(seedE, 2) ∈ Zn×n̄q

7: B = A× S + E
8: Public key pk ← (seedA,B) and Secret key sk ← S
9: end procedure
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Kyber KEM

• Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based
on the MLWE problem

• S ∈ Rkq and E ∈ R`
q are sampled from a Centered Binomial

distribution.

• Same seeds appended with fixed nonces are yet again used in
sampling S and E.

• In NIST submission, designers use nonce=(0 to k-1) for S and
nonce=(k to 2k-1) for E.
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Kyber CPA-PKE

1: procedure KYBER.CPAPKE.GEN()

2: d← {0, 1}256, (ρ, σ) := G(d), N := 0
3: For i from 0 to k − 1
4: For j from 0 to k − 1
5: a[i][j]← Parse(XOF(ρ||j||i))
6: EndFor
7: EndFor
8: For i from 0 to k − 1
9: s[i]← CBDη(PRF(σ,N))
10: N := N + 1
11: EndFor
12: For i from 0 to k − 1
13: e[i]← CBDη(PRF(σ,N))
14: N := N + 1
15: EndFor
16: ŝ← NTT(s)
17: t = NTT−1(â ∗ ŝ) + e
18: pk := (Encodedt (Compressq(t, dt))||ρ)

19: Secret Key := Encode13(ŝmod+q)
20: Return (Public Key,Secret Key)
21: end procedure
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17: t = NTT−1(â ∗ ŝ) + e
18: Public Key := (Encodedt (Compressq(t, dt))||ρ) **** Adds more error

19: Secret Key := Encode13(ŝmod+q)
20: Return (Public Key,Secret Key)
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Key Recovery Attack on Kyber

• The Compress function rounds each coefficient to a lower
modulus thereby inherently introducing additional
deterministic error.

• Though the induced fault nullified the error in the LWE
instance, the LWR hardness might stil not be possible to
break.

• The authors have only considered rounding for efficiency and
not for security.

• The authors state that “we believe that the compression
technique adds some security”, but it has not been quantified.

• Thus, our fault does not result in direct key recovery attack,
but brings down the hardness to solving the corresponding
LWR problem.
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Dilithium Signature Scheme

• Dilithium is a Fiat-Shamir Abort-based lattice signature
scheme.

• Indistinguishability of the Public key is based on the MLWE
problem.

• Here again, nonces appended with domain separators are used
to sample S ∈ R`

q and E ∈ Rk
q .
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Dilithium Signature Scheme

1: procedure DILITHIUM.KEYGEN()

2: ρ, ρ′ ← {0, 1}256, K ← {0, 1}256, N := 0
3: For i from 0 to `− 1
4: s1[i] := Sample(PRF (ρ′, N))
5: N := N + 1
6: EndFor
7: For i from 0 to k − 1
8: s2[i] := Sample(PRF (ρ′, N))
9: N := N + 1
10: EndFor A ∼ Rk×`q := ExpandA(ρ)
11: Compute t = A× s1 + s2
12: Compute t1 := Power2Roundq(t, d)
13: tr ∈ {0, 1}384 := CRH(ρ||t1)
14: Return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)
15: end procedure
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14: Return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)
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Key Recovery Attack on Dilithium

• Only the higher order bits of the LWE instance t are declared
as the public key.

• Some rounding error is introduced on top of the LWE instance
t.

• Security Analysis of Dilithium assumes that the whole of t is
known to the adversary. The original LWE instance t can be
derived just through observation of a large number of
signatures.

• If the whole of t can be derived by the adversary, our induced
faults results in a key recovery attack.
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NEWHOPE CPA-PKE

1: procedure
NEWHOPE.CPAPKE.ENC(pk ∈ {0, . . . , 255}7.n/4+32, µ ∈
{0, . . . , 255}32, coin ∈ {0, . . . , 255}32)

2:
...

3: ś← PolyBitRev(Sample(coin, 0))
4: é← PolyBitRev(Sample(coin, 1))
5: ´́e← Sample(coin, 2)
6: t́ = NTT(ś)
7: û = â ∗ t̂ + NTT(é)
8: v = Encode(µ)
9: v́ = NTT−1(b̂ ∗ t̂) + ´́e + v

10: h = Compress(v́)
11: Return c = EncodeC(û,h)
12: end procedure
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4: é← PolyBitRev(Sample(coin, 1→ R))
5: ´́e← Sample(coin, 2)
6: t́ = NTT(ś)
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11: Return c = EncodeC(û,h)
12: end procedure
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FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC()

2: seedE ← U({0, 1}lenE)
3: Ś← Frodo.SampleMatrix(seedE, 4) ∈ Zm̄×nq

4: É← Frodo.SampleMatrix(seedE, 5) ∈ Zm̄×nq

5:
´́
E← Frodo.SampleMatrix(seedE, 6) ∈ Zn×n̄q

6: Compute B́ = Ś×A + É

7: Compute V = Ś×B +
´́
E + Frodo.Encode(µ)

8: Ciphertext C← (C1,C2) = (B́,V)
9: end procedure
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KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC(pk ∈ Bdt·k·n/8+32, m ∈ B32, r ∈ B32)
2: N = 0
3: For i from 0 to k − 1
4: r[i]← CBDη(PRF(r,N))
5: N := N + 1
6: EndFor
7: For i from 0 to k − 1
8: e1 ← CBDη(PRF(r,N))
9: N := N + 1
10: EndFor
11: For i from 0 to k − 1 e2 ← CBDη(PRF(r,N))
12: EndFor
13: r̂ = NTT(r)
14: u = NTT−1(âT ∗ r̂) + e1
15: v = NTT−1(t̂T ∗ r̂) + e2 + Decode1(Decomposeq(m, 1))
16: c1 = Encodedu (Compressq(u, du))
17: c2 = Encodedv (Compressq(v, dv))
18: c = (c1, c2)
19: end procedure
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Translating Message Recovery Attack to CCA-KEM
schemes

• CPA-secure PKE is transformed to CCA-secure KEM using
the Quantum-Fujisaki Okamoto transformation.

• A re-encapsulation is performed in the decapsulation
procedure to check for the validity of ciphertexts.

• Thus, faults injected into the encapsulation procedure are
detected during decapsulation.

• How do we bypass this?

• We observe that a fault attacker in a Man-In-The-Middle
(MITM) setting can still mount the attack without being
detected during decapsulation.
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Message Recovery Attack over CCA-KEM schemes

Figure: Fault assisted MITM attack on CCA Secure KEM scheme
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Experimental Validation on ARM Cortex-M4

• We target reference implementations from the pqm4
benchmarking framework for PQC candidates on the ARM
Cortex-M4 microcontroller.

• Implementations were ported to the STM32F4DISCOVERY
board (DUT) housing the STM32F407 microcontroller.

• Clock Frequency: 24 MHz.
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Analysis of implementation for Fault Vulnerability

• We target the usage (not generation) of nonce in all reference
implementations.

• The seed to the Sample function along with the nonce is
input as an array A to an XOF function.

• The nonce is stored as the last element of the array.

• For all the call instances to this XOF function, all the
elements of the array A are the same except the nonce value.

• If this nonce-store to the array is skipped, we are essentially
using the same randomness to sample both S and E.
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Analysis of implementation for Fault Vulnerability
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Experimental Setup

PC

EM pulse 
generator

DUT 
(ARM Cortex-M4F)

Injection Probe

X-Y Table

Figure: Description of our EMFI setup
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Experimental Setup

Figure: (1) EM Pulse Generator (2) USB-Microscope (3) STM32M4F
Discovery Board (DUT) (4) Arudino based Relay Shield (5) Controller
Laptop (6) Oscilloscope (7) EM Pulse Injector (8) XYZ Motorized Table
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Experimental Setup

(a) (b)

Figure: (a) Hand-made probe used for our EMFI setup (b) Probe placed
over the DUT
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Results on ARM Cortex-M4

• Required Fault: Skip the store instruction to a particular
memory location.

• We profiled the ARM chip using a sample load and store
program to find a ”sweet spot” to skip the store to a
particular memory location.

• Fault sensitive region is the area near the ARM logo of the
STM32M4F07 microcontroller.

• Fault repeatability is (almost) 100% at the identified location
for a specific set of voltage pulse parameters.

• Voltage:150V-200V, Pulse Width = 12nsec, Rise-Time = 2
nsec.

• Faults were synchronized with the target operation using an
internally generated trigger.
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Fault Complexity

• Security of Kyber is weakened because the induced fault has
removed the hardness from the LWE problem.

• If enough number of signatures corresponding to the same
public-private key pair can be observed, then it can lead to a
successful key recovery attack on Dilithium.
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Countermeasures and Future Directions

• Usage of separate seeds for S and E

• Frodo has updated its specifications as part of its second
round submission by using separate seeds for S and E.

• Synchronization of faults with vulnerable operations.

• Study on weakened LWE instances in Kyber and Dilithium.
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Conclusion

• We identified fault-vulnerabilities due to usage of nonces in
multiple LWE-based lattice schemes.

• We proposed key recovery attacks over NewHope, Frodo,

Kyber and Dilithium and message recovery attacks over
NewHope, Frodo and Kyber KEM schemes.

• Practical Validation of our attack through EMFI on
implementations from pqm4 library on the ARM Cortex-M4
microcontroller.

• We hope that nonces either be avoided or be used more
carefully in the future.
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Thank you!
Any questions?
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