

Number "Not Used" Once -Practical fault attack on pqm4 implementations of NIST candidates

**Prasanna Ravi**, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, Debdeep Mukhopadhyay

COSADE-2019 5th April 2019





### Table of Contents

- Context
- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion





## Table of Contents

#### Context

- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion







• Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.







- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.







- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.





- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048??





- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits





- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096
  logical qubits ← Millions of physical qubits





- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096
  logical qubits ← Millions of physical qubits





- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits ← Millions of physical qubits
- NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.





- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from lonQ.
- Bristlecone, Google's quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits ← Millions of physical qubits
- NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.
- Started in December 2017, 3-5 years analysis period, followed by 2 years for draft standards.





- Signatures
- Encryption
- Key-establishments (KEMs)
- Selection Criteria:
  - Security
  - Performance
  - Backward compatibility
  - Perfect forward secrecy
  - • •







- Signatures
- Encryption
- Key-establishments (KEMs)
- Selection Criteria:
  - Security
  - Performance
  - Backward compatibility
  - Perfect forward secrecy
  - Resistance to implementation attacks
  - • •







| Туре          | Signatures | KEM/Encryption | Overall |
|---------------|------------|----------------|---------|
| Lattice-based | 5          | 23             | 28      |
| Code-based    | 3          | 17             | 20      |
| Multivariate  | 8          | 2              | 10      |
| Hash-based    | 3          | 0              | 3       |
| lsogeny-based | 0          | 1              | 1       |
| Others        | 2          | 5              | 7       |
| Total         | 21         | 48             | 69      |





| Туре          | Signatures | KEM/Encryption | Overall |
|---------------|------------|----------------|---------|
| Lattice-based | 3          | 9              | 12      |
| Code-based    | 0          | 7              | 7       |
| Multivariate  | 4          | 0              | 4       |
| Hash-based    | 2          | -              | 2       |
| lsogeny-based | 0          | 1              | 1       |
| Others        | 0          | 0              | 0       |
| Total         | 9          | 17             | 26      |







- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: Instruction Skips on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.





- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: Instruction Skips on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
- Impact:





- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: Instruction Skips on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
- Impact:
  - Key Recovery Attack





- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: Instruction Skips on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
- Impact:
  - Key Recovery Attack
  - Message Recovery Attack in CCA-secure KEM schemes in Man In The Middle (MITM) setting





## Table of Contents

#### 1 Context

- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion













• Let  $\mathbf{A} \in \mathbb{Z}_{q}^{n \times n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_{q}^{n} \leftarrow D_{\sigma}$ 







- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$







- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs  $(\mathbf{A},\mathbf{T})\text{, find }\mathbf{S}.$







- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs  $({\bf A}, {\bf T}),$  find  ${\bf S}.$
- Decisional LWE: Distinguish between valid LWE pairs  $(\mathbf{A}, \mathbf{T})$  from uniformly random samples in  $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$ .







- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs  $(\mathbf{A},\mathbf{T})\text{, find }\mathbf{S}.$
- Decisional LWE: Distinguish between valid LWE pairs  $(\mathbf{A}, \mathbf{T})$  from uniformly random samples in  $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$ .
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).





- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs  $({\bf A}, {\bf T}),$  find  ${\bf S}.$
- Decisional LWE: Distinguish between valid LWE pairs  $(\mathbf{A}, \mathbf{T})$  from uniformly random samples in  $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$ .
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
- Ring LWE:  $\mathbf{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$  with  $\mathbf{A}, \mathbf{S}, \mathbf{E} \in \mathbf{R}_q$ .



- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs  $({\bf A},{\bf T}),$  find  ${\bf S}.$
- Decisional LWE: Distinguish between valid LWE pairs  $(\mathbf{A}, \mathbf{T})$  from uniformly random samples in  $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$ .
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
- Ring LWE:  $\mathbf{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$  with  $\mathbf{A}, \mathbf{S}, \mathbf{E} \in \mathbf{R}_q$ .
- Module LWE:  $\mathbf{R}_q^{k \times l} = (\mathbb{Z}_q[X]/(X^n + 1))^{k \times l}$  with  $\mathbf{A} \in \mathbf{R}_q^{k \times \ell}$ ,  $\mathbf{S} \in \mathbf{R}_q^{\ell}$ ,  $\mathbf{E} \in \mathbf{R}_q^k$ .



- Let  $\mathbf{A} \in \mathbb{Z}_q^{n imes n}$  and  $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs  $(\mathbf{A},\mathbf{T})\text{, find }\mathbf{S}.$
- Decisional LWE: Distinguish between valid LWE pairs  $(\mathbf{A}, \mathbf{T})$  from uniformly random samples in  $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$ .
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
- Ring LWE:  $\mathbf{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$  with  $\mathbf{A}, \mathbf{S}, \mathbf{E} \in \mathbf{R}_q$ .
- Module LWE:  $\mathbf{R}_q^{k \times l} = (\mathbb{Z}_q[X]/(X^n+1))^{k \times l}$  with  $\mathbf{A} \in \mathbf{R}_q^{k \times \ell}$ ,  $\mathbf{S} \in \mathbf{R}_q^{\ell}$ ,  $\mathbf{E} \in \mathbf{R}_q^k$ .
- Learning With Rounding (LWR): Error deterministically generated by rounding to a lower modulus.



• Error component  ${\bf E}$  is essential to hardness guarantees







- $\bullet~\mbox{Error}$  component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$







- Error component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$
- An attack reducing (or bounding)  ${\bf E}$  could potentially compromise the security of the scheme





- Error component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$
- An attack reducing (or bounding) **E** could potentially compromise the security of the scheme
- Several insecure instantiations of LWE:





- Error component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$
- An attack reducing (or bounding) **E** could potentially compromise the security of the scheme
- Several insecure instantiations of LWE:
  - Distribution always outputs zero error



- Error component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$
- An attack reducing (or bounding) **E** could potentially compromise the security of the scheme
- Several insecure instantiations of LWE:
  - Distribution always outputs zero error
  - Distribution always outputs an error in the interval

$$z + \left[ -\frac{1}{2}, \frac{1}{2} \right)$$


## The Importance of Error

- Error component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$
- An attack reducing (or bounding)  ${\bf E}$  could potentially compromise the security of the scheme
- Several insecure instantiations of LWE:
  - Distribution always outputs zero error
  - Distribution always outputs an error in the interval  $z + \left[-\frac{1}{2}, \frac{1}{2}\right)$
  - Sum of a specific set of error co-ordinates is always zero



## The Importance of Error

- Error component  ${\bf E}$  is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations  $T = \mathbf{A} * \mathbf{S}$
- An attack reducing (or bounding)  ${\bf E}$  could potentially compromise the security of the scheme
- Several insecure instantiations of LWE:
  - Distribution always outputs zero error
  - Distribution always outputs an error in the interval  $z+\big[-\frac{1}{2},\frac{1}{2}\big)$
  - Sum of a specific set of error co-ordinates is always zero
  - Secret is same as the Error



# Table of Contents

- 1 Context
- 2 Lattice based Crypto: Background

### 3 Fault Vulnerability

- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion







- $\bullet\,$  Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \text{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \text{Sample}(\sigma_{\mathbf{E}})$







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \text{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \text{Sample}(\sigma_{\mathbf{E}})$







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \mathtt{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \mathtt{Sample}(\sigma_{\mathbf{E}})$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \mathtt{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \mathtt{Sample}(\sigma_{\mathbf{E}})$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \mathtt{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \mathtt{Sample}(\sigma_{\mathbf{E}})$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
  - $S = Sample(\sigma, nonce_{S}), E = Sample(\sigma, nonce_{E})$







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \mathtt{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \mathtt{Sample}(\sigma_{\mathbf{E}})$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
  - $S = Sample(\sigma, nonce_S), E = Sample(\sigma, nonce_E)$
- In need for efficiency, the same seed appended with **one byte of nonce** is used across multiple instances of the *Sample* function.







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \mathtt{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \mathtt{Sample}(\sigma_{\mathbf{E}})$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
  - $S = Sample(\sigma, nonce_{S}), E = Sample(\sigma, nonce_{E})$
- In need for efficiency, the same seed appended with **one byte of nonce** is used across multiple instances of the *Sample* function.
- If this nonce could be faulted to realize *reuse*, then same seed is used to sample both S and E resulting in S = E.







- Certain amount of randomness required to generate  ${\bf S}$  and  ${\bf E}.$
- The secret  ${\bf S}$  and error  ${\bf E}$  are sampled from the same distribution and utilize the same functions for sampling.
- $\mathbf{S} = \mathtt{Sample}(\sigma_{\mathbf{S}}), \ \mathbf{E} = \mathtt{Sample}(\sigma_{\mathbf{E}})$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
  - $S = Sample(\sigma, nonce_{S}), E = Sample(\sigma, nonce_{E})$
- In need for efficiency, the same seed appended with **one byte of nonce** is used across multiple instances of the *Sample* function.
- If this nonce could be faulted to realize *reuse*, then same seed is used to sample both S and E resulting in S = E.







• Assume a Ring LWE instance

$$\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{E} \in \mathbf{R}_q$$







• Assume a Ring LWE instance

$$\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{E} \in \mathbf{R}_q$$

• Inject fault such that  $\mathbf{E} = \mathbf{S}$ .







• Assume a Ring LWE instance

$$\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{E} \in \mathbf{R}_q$$

- Inject fault such that  $\mathbf{E} = \mathbf{S}$ .
- Ring-LWE instance is faulted to:

 $\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{S} \in \mathbf{R}_q$ 







• Assume a Ring LWE instance

$$\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{E} \in \mathbf{R}_q$$

- Inject fault such that  $\mathbf{E} = \mathbf{S}$ .
- Ring-LWE instance is faulted to:

 $\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{S} \in \mathbf{R}_q$ 

• Modular linear system of equations with n equations and n unknowns which is trivially solvable.







• Assume a Ring LWE instance

$$\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{E} \in \mathbf{R}_q$$

- Inject fault such that  $\mathbf{E} = \mathbf{S}$ .
- Ring-LWE instance is faulted to:

 $\mathbf{T} = \mathbf{A} \times \mathbf{S} + \mathbf{S} \in \mathbf{R}_q$ 

- Modular linear system of equations with n equations and n unknowns which is trivially solvable.
- Applies to all variants of LWE (General LWE, Ring-LWE, Module-LWE)







- These faulty LWE instances can be used to perform key recovery and message recovery attacks.
- Key recovery attacks are performed by faulting the key generation procedure.
- Key recovery attacks applicable to NewHope, Frodo, Kyber and Dilithium.
- Message recovery attacks are performed by faulting the encapsulation procedure.
- Message recovery attacks only applicable over NewHope, Frodo and Kyber KEM schemes.







# Table of Contents

- 1 Context
- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion







• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)







- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.







- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.







- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- +  ${\bf S}$  and  ${\bf E}$  are generated using a Sample operation







- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- +  ${\bf S}$  and  ${\bf E}$  are generated using a Sample operation
- Sample takes input as a 32-byte seed and 1-byte of nonce







- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- +  ${\bf S}$  and  ${\bf E}$  are generated using a Sample operation
- Sample takes input as a 32-byte seed and 1-byte of nonce
- It uses SHAKE256 (SHA-3 family) as an Extendable Output Function (XOF) to deterministically generate more random bits and subsequently generate **S** and **E**.







- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- +  ${\bf S}$  and  ${\bf E}$  are generated using a Sample operation
- Sample takes input as a 32-byte seed and 1-byte of nonce
- It uses SHAKE256 (SHA-3 family) as an Extendable Output Function (XOF) to deterministically generate more random bits and subsequently generate **S** and **E**.
- In NIST submission, designers use nonce=(0,1).







### NEWHOPE CPA-PKE

1: **procedure** NEWHOPE.CPAPKE.GEN()

- 3:  $\hat{\mathbf{a}} \leftarrow \texttt{GenA}(publicseed)$
- $\texttt{4:} \qquad \textbf{s} \leftarrow \texttt{PolyBitRev}(\texttt{Sample}(noiseseed, 0))$

5: 
$$\hat{\mathbf{s}} = \text{NTT}(\mathbf{s})$$

- $\mathbf{6}: \qquad \mathbf{e} \leftarrow \texttt{PolyBitRev}(\texttt{Sample}(noiseseed, 1))$
- 7:  $\hat{\mathbf{e}} = \mathrm{NTT}(\mathbf{e})$
- 8:  $\hat{\mathbf{b}} = \hat{\mathbf{a}} * \hat{\mathbf{s}} + \hat{\mathbf{e}}$
- 9: Return

 $(pk = \texttt{EncodePK}(\hat{\mathbf{b}}, publicseed), sk = \texttt{EncodePolynomial}(\mathbf{s}))$ 

10: end procedure





### NEWHOPE CPA-PKE

1: **procedure** NEWHOPE.CPAPKE.GEN()

2:  
3:  

$$\hat{\mathbf{a}} \leftarrow \text{GenA}(publicseed)$$
  
4:  
 $\mathbf{s} \leftarrow \text{PolyBitRev}(\text{Sample}(noiseseed, 0 \rightarrow R))$   
5:  
 $\hat{\mathbf{s}} = \text{NTT}(\mathbf{s})$   
6:  
 $\mathbf{e} \leftarrow \text{PolyBitRev}(\text{Sample}(noiseseed, 1 \rightarrow R))$   
7:  
 $\hat{\mathbf{e}} = \text{NTT}(\mathbf{e})$   
8:  
 $\hat{\mathbf{b}} = \hat{\mathbf{a}} * \hat{\mathbf{s}} + \hat{\mathbf{e}}$ 

9: Return

 $(pk = \texttt{EncodePK}(\hat{\mathbf{b}}, publicseed), sk = \texttt{EncodePolynomial}(\mathbf{s}))$ 

10: end procedure





### NEWHOPE CPA-PKE

1: **procedure** NEWHOPE.CPAPKE.GEN()

2:  
3: 
$$\hat{\mathbf{a}} \leftarrow \text{GenA}(publicseed)$$
  
4:  $\mathbf{s} \leftarrow \text{PolyBitRev}(\text{Sample}(noiseseed, 0 \rightarrow R))$   
5:  $\hat{\mathbf{s}} = \text{NTT}(\mathbf{s})$   
6:  $\mathbf{e} \leftarrow \text{PolyBitRev}(\text{Sample}(noiseseed, 1 \rightarrow R))$   
7:  $\hat{\mathbf{e}} = \text{NTT}(\mathbf{e})$ 

- 8:  $\hat{\mathbf{b}} = \hat{\mathbf{a}} * \hat{\mathbf{s}} + \hat{\mathbf{e}}$
- 9: Return

 $(pk = \texttt{EncodePK}(\hat{\mathbf{b}}, publicseed), sk = \texttt{EncodePolynomial}(\mathbf{s}))$ 

10: end procedure





#### Frodo KEM

- Frodo, similar to NewHope is a suite of KEM (NewHope-CPA/CCA-KEM) based on the General LWE problem.
- We identify the same vulnerable usage of nonce for sampling  ${\bf S}$  and  ${\bf E}.$







### Frodo CPA-PKE

- 1: **procedure** FRODO.CPAPKE.GEN()
- 2:  $seed_{\mathbf{A}} \leftarrow U(\{0,1\}^{len_A})$
- 3:  $\mathbf{A} \leftarrow \mathsf{Frodo.Gen}(seed_{\mathbf{A}}) \in \mathbb{Z}_q^{n \times n}$
- 4:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_E})$
- 5:  $\mathbf{S} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 1) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6:  $\mathbf{E} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 2) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 7:  $\mathbf{B} = \mathbf{A} \times \mathbf{S} + \mathbf{E}$
- 8: Public key  $pk \leftarrow (seed_{\mathbf{A}}, \mathbf{B})$  and Secret key  $sk \leftarrow \mathbf{S}$
- 9: end procedure





### Frodo CPA-PKE

- 1: **procedure** FRODO.CPAPKE.GEN()
- 2:  $seed_{\mathbf{A}} \leftarrow U(\{0,1\}^{len_A})$
- 3:  $\mathbf{A} \leftarrow \mathsf{Frodo.Gen}(seed_{\mathbf{A}}) \in \mathbb{Z}_q^{n \times n}$
- 4:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_E})$
- 5:  $\mathbf{S} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 1 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6:  $\mathbf{E} \leftarrow \text{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 2 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\hat{n} \times \bar{n}}$
- 7:  $\mathbf{B} = \mathbf{A} \times \mathbf{S} + \mathbf{E}$
- 8: Public key  $pk \leftarrow (seed_{\mathbf{A}}, \mathbf{B})$  and Secret key  $sk \leftarrow \mathbf{S}$
- 9: end procedure





### Frodo CPA-PKE

- 1: **procedure** FRODO.CPAPKE.GEN()
- 2:  $seed_{\mathbf{A}} \leftarrow U(\{0,1\}^{len_A})$
- 3:  $\mathbf{A} \leftarrow \mathsf{Frodo.Gen}(seed_{\mathbf{A}}) \in \mathbb{Z}_q^{n \times n}$
- 4:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_E})$
- 5:  $\mathbf{S} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 1 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6:  $\mathbf{E} \leftarrow \text{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 2 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\hat{n} \times \bar{n}}$
- 7:  $\mathbf{B} = \mathbf{A} \times \mathbf{S} + \mathbf{E}$
- 8: Public key  $pk \leftarrow (seed_{\mathbf{A}}, \mathbf{B})$  and Secret key  $sk \leftarrow \mathbf{S}$
- 9: end procedure





## Kyber KEM

- Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based on the MLWE problem
- $\mathbf{S} \in R_q^k$  and  $\mathbf{E} \in \mathbf{R}_q^\ell$  are sampled from a Centered Binomial distribution.
- Same seeds appended with fixed nonces are yet again used in sampling  ${\bf S}$  and  ${\bf E}.$







## Kyber KEM

- Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based on the MLWE problem
- $\mathbf{S} \in R_q^k$  and  $\mathbf{E} \in \mathbf{R}_q^\ell$  are sampled from a Centered Binomial distribution.
- Same seeds appended with fixed nonces are yet again used in sampling  ${\bf S}$  and  ${\bf E}.$
- In NIST submission, designers use nonce=(0 to k-1) for S and nonce=(k to 2k-1) for E.



# Kyber CPA-PKE

```
1: procedure KYBER.CPAPKE.GEN()
         d \leftarrow \{0,1\}^{256}, (\rho,\sigma) := G(d), N := 0
 2:
 3: For i from 0 to k-1
 4: For j from 0 to k-1
         \mathbf{a}[i][j] \leftarrow \mathsf{Parse}(\mathsf{XOF}(\rho||j||i))
 5:
 6: EndFor
 7 EndFor
 8: For i from 0 to k-1
 9: \mathbf{s}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N))
10: N := N + 1
11: EndFor
12: For i from 0 to k-1
13: \mathbf{e}[i] \leftarrow \mathsf{CBD}_{\eta}(\mathsf{PRF}(\sigma, N))
14: N := N + 1
15: EndFor
16: \hat{\mathbf{s}} \leftarrow \mathsf{NTT}(\mathbf{s})
17: t = NTT^{-1}(\hat{a} * \hat{s}) + e
18: pk := (\mathsf{Encode}_{d_t}(\mathsf{Compress}_q(\mathbf{t}, d_t)) || \rho)
19: Secret Key := Encode_{13}(\hat{s} \mod^+ q)
20:
          Return (Public Key, Secret Key)
21: end procedure
```






# Kyber CPA-PKE

```
1: procedure KYBER.CPAPKE.GEN()
         d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0
 2:
 3: For i from 0 to k-1
 4: For j from 0 to k-1
         \mathbf{a}[i][j] \leftarrow \mathsf{Parse}(\mathsf{XOF}(\rho||j||i))
 5:
 6: EndFor
 7. EndFor
 8: For i from 0 to k-1
 9: \mathbf{s}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N \rightarrow R))
10: N := N + 1
11: EndFor
12: For i from 0 to k-1
13: \mathbf{e}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N \rightarrow R))
14: N := N + 1
15: EndFor
16: \hat{\mathbf{s}} \leftarrow \mathsf{NTT}(\mathbf{s})
17: t = NTT^{-1}(\hat{a} * \hat{s}) + e
18: pk := (\text{Encode}_{d_t}(\text{Compress}_{q}(\mathbf{t}, d_t))||\rho)
19:
          Secret Key := Encode_{13}(\hat{s} \mod^+ q)
20:
           Return (Public Key, Secret Key)
21: end procedure
```







# Kyber CPA-PKE

```
1: procedure KYBER.CPAPKE.GEN()
         d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0
 2:
 3: For i from 0 to k-1
 4: For j from 0 to k-1
         \mathbf{a}[i][j] \leftarrow \mathsf{Parse}(\mathsf{XOF}(\rho||j||i))
 5:
 6: EndFor
 7. EndFor
 8: For i from 0 to k-1
 9: \mathbf{s}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N \rightarrow R))
10: N := N + 1
11: EndFor
12: For i from 0 to k-1
13: \mathbf{e}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N \rightarrow R))
14: N := N + 1
15: EndFor
16: \hat{\mathbf{s}} \leftarrow \mathsf{NTT}(\mathbf{s})
17: t = NTT^{-1}(\hat{a} * \hat{s}) + e
18: pk := (\mathsf{Encode}_{d_t}(\mathsf{Compress}_q(\mathbf{t}, d_t))||\rho)
19:
          Secret Key := Encode_{13}(\hat{s} \mod^+ q)
20:
           Return (Public Key, Secret Key)
21: end procedure
```







# Kyber CPA-PKE

```
1: procedure KYBER.CPAPKE.GEN()
         d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0
 2:
 3: For i from 0 to k-1
 4: For j from 0 to k-1
         \mathbf{a}[i][j] \leftarrow \mathsf{Parse}(\mathsf{XOF}(\rho||j||i))
 5:
 6: EndFor
 7. EndFor
 8: For i from 0 to k-1
 9: \mathbf{s}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N \rightarrow R))
10: N := N + 1
11: EndFor
12: For i from 0 to k-1
13: \mathbf{e}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(\sigma, N \rightarrow R))
14: N := N + 1
15: EndFor
16: \hat{\mathbf{s}} \leftarrow \mathsf{NTT}(\mathbf{s})
17: t = NTT^{-1}(\hat{a} * \hat{s}) + e
18: Public Key := (\text{Encode}_{d_t}(\text{Compress}_q(\mathbf{t}, d_t))||\rho) **** \text{ Adds more error}
          Secret Key := Encode_{13}(\hat{s} \mod^+ q)
19:
20:
          Return (Public Key, Secret Key)
21: end procedure
```







- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might stil not be possible to break.







- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might stil not be possible to break.
- The authors have only considered rounding for efficiency and not for security.







- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might stil not be possible to break.
- The authors have only considered rounding for efficiency and not for security.
- The authors state that "we believe that the compression technique adds some security", but it has not been quantified.







- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might stil not be possible to break.
- The authors have only considered rounding for efficiency and not for security.
- The authors state that "we believe that the compression technique adds some security", but it has not been quantified.
- Thus, our fault does not result in direct key recovery attack, but brings down the hardness to solving the corresponding LWR problem.





- Dilithium is a Fiat-Shamir Abort-based lattice signature scheme.
- Indistinguishability of the Public key is based on the MLWE problem.
- Here again, nonces appended with domain separators are used to sample  $\mathbf{S} \in \mathbf{R}_q^\ell$  and  $\mathbf{E} \in \mathbf{R}_q^k$ .







```
1: procedure DILITHIUM.KEYGEN()
 2: \rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0
 3: For i from 0 to \ell - 1
 4: \mathbf{s}_1[i] := Sample(PRF(\rho', N))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8: \mathbf{s}_{2}[i] := Sample(PRF(\rho', N))
 9:
      N := N + 1
10: EndFor \mathbf{A} \sim R_a^{k \times \ell} := \mathsf{ExpandA}(\rho)
11:
        Compute \mathbf{t} = \mathbf{A} \times \mathbf{s}_1 + \mathbf{s}_2
12: Compute \mathbf{t}_1 := \mathsf{Power2Round}_a(\mathbf{t}, d)
13: tr \in \{0, 1\}^{384} := \mathsf{CRH}(\rho || \mathbf{t}_1)
14:
           Return pk = (\rho, \mathbf{t}_1), sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)
15: end procedure
```





```
1: procedure DILITHIUM.KEYGEN()
 2: \rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0
 3: For i from 0 to \ell - 1
 4: \mathbf{s}_1[i] := Sample(PRF(\rho', N \rightarrow R))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8:
          \mathbf{s}_{2}[i] := Sample(PRF(\rho', N \rightarrow R))
 9:
       N := N + 1
10: EndFor \mathbf{A} \sim R_a^{k \times \ell} := \mathsf{ExpandA}(\rho)
11:
           Compute \mathbf{t} = \mathbf{A} \times \mathbf{s}_1 + \mathbf{s}_2
12: Compute \mathbf{t}_1 := \mathsf{Power2Round}_a(\mathbf{t}, d)
13: tr \in \{0, 1\}^{384} := \mathsf{CRH}(\rho || \mathbf{t}_1)
14:
           Return pk = (\rho, \mathbf{t}_1), sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)
15: end procedure
```







```
1: procedure DILITHIUM.KEYGEN()
 2: \rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0
 3: For i from 0 to \ell - 1
 4: \mathbf{s}_1[i] := Sample(PRF(\rho', N \rightarrow R))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8:
          \mathbf{s}_{2}[i] := Sample(PRF(\rho', N \rightarrow R))
 9:
       N := N + 1
10: EndFor \mathbf{A} \sim R_a^{k \times \ell} := \mathsf{ExpandA}(\rho)
11:
           Compute \mathbf{t} = \mathbf{A} \times \mathbf{s}_1 + \mathbf{s}_2
12: Compute \mathbf{t}_1 := \mathsf{Power2Round}_a(\mathbf{t}, d)
13: tr \in \{0, 1\}^{384} := \mathsf{CRH}(\rho || \mathbf{t}_1)
14:
           Return pk = (\rho, \mathbf{t}_1), sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)
15: end procedure
```







```
1: procedure DILITHIUM.KEYGEN()
 2: \rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0
 3: For i from 0 to \ell - 1
 4: \mathbf{s}_1[i] := Sample(PRF(\rho', N \rightarrow R))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8:
          \mathbf{s}_{2}[i] := Sample(PRF(\rho', N \rightarrow R))
 9:
       N := N + 1
10: EndFor \mathbf{A} \sim R_a^{k \times \ell} := \mathsf{ExpandA}(\rho)
11:
           Compute \mathbf{t} = \mathbf{A} \times \mathbf{s}_1 + \mathbf{s}_2
12: Compute \mathbf{t}_1 := \text{Power2Round}_a(\mathbf{t}, d) ***** Only the top d bits of \mathbf{t}
13: tr \in \{0, 1\}^{384} := \mathsf{CRH}(\rho || \mathbf{t}_1)
14:
           Return pk = (\rho, \mathbf{t}_1), sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0)
15: end procedure
```







• Only the higher order bits of the LWE instance t are declared as the public key.







- Only the higher order bits of the LWE instance t are declared as the public key.
- Some rounding error is introduced on top of the LWE instance  ${\bf t}.$







- Only the higher order bits of the LWE instance t are declared as the public key.
- Some rounding error is introduced on top of the LWE instance t.
- Security Analysis of Dilithium assumes that the whole of t is known to the adversary. The original LWE instance t can be derived just through observation of a large number of signatures.







- Only the higher order bits of the LWE instance t are declared as the public key.
- Some rounding error is introduced on top of the LWE instance t.
- Security Analysis of Dilithium assumes that the whole of t is known to the adversary. The original LWE instance t can be derived just through observation of a large number of signatures.
- If the whole of t can be derived by the adversary, our induced faults results in a key recovery attack.





# Table of Contents

- 1 Context
- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion







1: procedure

- 2:
- 3:  $\mathbf{\acute{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0))$
- $\texttt{4:} \quad \acute{\mathbf{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1))$
- 5:  $\acute{\mathbf{e}} \leftarrow \texttt{Sample}(coin, 2)$
- 6:  $\acute{\mathbf{t}} = \mathrm{NTT}(\acute{\mathbf{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \texttt{Encode}(\mu)$$

- 9:  $\hat{\mathbf{v}} = \mathbf{N}\mathbf{T}\mathbf{T}^{-1}(\hat{\mathbf{b}} * \hat{\mathbf{t}}) + \hat{\mathbf{e}} + \mathbf{v}$
- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- 3:  $\acute{\mathbf{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \mathbf{R}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \texttt{Sample}(coin, 2)$
- 6:  $\acute{\mathbf{t}} = \mathrm{NTT}(\acute{\mathbf{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \texttt{Encode}(\mu)$$

9: 
$$\hat{\mathbf{v}} = \mathbf{N}\mathbf{T}\mathbf{T}^{-1}(\hat{\mathbf{b}} * \hat{\mathbf{t}}) + \hat{\mathbf{e}} + \mathbf{v}$$

- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- 3:  $\mathbf{\acute{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \mathbf{R}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \mathtt{Sample}(coin, 2)$
- 6:  $\acute{\mathbf{t}} = \text{NTT}(\acute{\mathbf{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \text{Encode}(\mu)$$

9: 
$$\mathbf{\hat{v}} = \mathbf{NTT}^{-1}(\mathbf{\hat{b}} * \mathbf{\hat{t}}) + \mathbf{\hat{e}} + \mathbf{v}$$

- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- 3:  $\acute{\mathbf{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \mathbf{R}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \mathtt{Sample}(coin, 2)$
- 6:  $\acute{\mathbf{t}} = \text{NTT}(\acute{\mathbf{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \texttt{Encode}(\mu)$$

- 9:  $\mathbf{v} = \mathbf{N}\mathbf{T}\mathbf{T}^{-1}(\mathbf{\hat{b}} * \mathbf{\hat{t}}) + \mathbf{\acute{e}} + \mathbf{v}$
- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- 3:  $\acute{\mathbf{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \mathbf{R}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \mathtt{Sample}(coin, 2)$
- 6:  $\acute{\mathbf{t}} = \text{NTT}(\acute{\mathbf{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \texttt{Encode}(\mu)$$

- 9:  $\mathbf{v} = \mathbf{N}\mathbf{T}\mathbf{T}^{-1}(\mathbf{\hat{b}} * \mathbf{\hat{t}}) + \mathbf{\acute{e}} + \mathbf{v}$
- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- $\textbf{3:} \quad \textbf{\acute{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \textbf{\textit{R}}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \mathtt{Sample}(coin, 2)$
- 6:  $\mathbf{\acute{t}} = NTT(\mathbf{\acute{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \texttt{Encode}(\mu)$$

- 9:  $\mathbf{\dot{v}} = \mathrm{NTT}^{-1}(\dot{\mathbf{\ddot{b}}} * \mathbf{\hat{t}}) + \mathbf{\acute{e}} + \mathbf{v}$
- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- $\textbf{3:} \quad \textbf{\acute{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \textbf{\textit{R}}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \mathtt{Sample}(coin, 2)$
- 6:  $\mathbf{\acute{t}} = NTT(\mathbf{\acute{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \texttt{Encode}(\mu)$$

- 9:  $\mathbf{\dot{v}} = \mathrm{NTT}^{-1}(\dot{\mathbf{\ddot{b}}} * \mathbf{\hat{t}}) + \mathbf{\acute{e}} + \mathbf{v}$
- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





1: procedure

- 2:
- $\textbf{3:} \quad \textbf{\acute{s}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 0 \rightarrow \textbf{\textit{R}}))$
- $\textbf{4:} \quad \textbf{\acute{e}} \leftarrow \texttt{PolyBitRev}(Sample(coin, 1 \rightarrow \textbf{R}))$
- 5:  $\acute{\mathbf{e}} \leftarrow \mathtt{Sample}(coin, 2)$
- 6:  $\mathbf{\acute{t}} = NTT(\mathbf{\acute{s}})$
- 7:  $\hat{\mathbf{u}} = \hat{\mathbf{a}} * \hat{\mathbf{t}} + \text{NTT}(\hat{\mathbf{e}})$

8: 
$$\mathbf{v} = \text{Encode}(\mu$$

- 9:  $\mathbf{\dot{v}} = \mathbf{N}\mathbf{T}\mathbf{T}^{-1}(\mathbf{\hat{b}} * \mathbf{\hat{t}}) + \mathbf{\acute{e}} + \mathbf{v}$
- 10:  $\mathbf{h} = \texttt{Compress}(\mathbf{\acute{v}})$
- 11: Return  $c = \texttt{EncodeC}(\hat{\mathbf{u}}, \mathbf{h})$
- 12: end procedure





- 1: **procedure** FRODO.CPAPKE.ENC()
- 2:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_{\mathbf{E}}})$
- 3:  $\mathbf{\acute{S}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 4) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 4:  $\mathbf{\acute{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 5) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 5:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 6) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6: Compute  $\dot{\mathbf{B}} = \dot{\mathbf{S}} \times \mathbf{A} + \dot{\mathbf{E}}$
- 7: Compute  $\mathbf{V} = \mathbf{\acute{S}} \times \mathbf{B} + \mathbf{\acute{E}} + Frodo.Encode(\mu)$
- 8: Ciphertext  $\mathbf{C} \leftarrow (\mathbf{C}_1, \mathbf{C}_2) = (\mathbf{\acute{B}}, \mathbf{V})$
- 9: end procedure





- 1: **procedure** FRODO.CPAPKE.ENC()
- 2:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_{\mathbf{E}}})$
- 3:  $\mathbf{\acute{S}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 4 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 4:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 5 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 5:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 6) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6: Compute  $\dot{\mathbf{B}} = \dot{\mathbf{S}} \times \mathbf{A} + \dot{\mathbf{E}}$
- 7: Compute  $\mathbf{V} = \mathbf{\acute{S}} \times \mathbf{B} + \mathbf{\acute{E}} + \mathsf{Frodo}.\mathsf{Encode}(\mu)$
- 8: Ciphertext  $\mathbf{C} \leftarrow (\mathbf{C}_1, \mathbf{C}_2) = (\mathbf{\dot{B}}, \mathbf{V})$
- 9: end procedure





- 1: **procedure** FRODO.CPAPKE.ENC()
- 2:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_{\mathbf{E}}})$
- 3:  $\mathbf{\acute{S}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 4 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 4:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 5 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 5:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 6) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6: Compute  $\mathbf{\acute{B}} = \mathbf{\acute{S}} \times \mathbf{A} + \mathbf{\acute{E}}$
- 7: Compute  $\mathbf{V} = \mathbf{\acute{S}} \times \mathbf{B} + \mathbf{\acute{E}} + \mathsf{Frodo}.\mathsf{Encode}(\mu)$
- 8: Ciphertext  $\mathbf{C} \leftarrow (\mathbf{C}_1, \mathbf{C}_2) = (\mathbf{\dot{B}}, \mathbf{V})$
- 9: end procedure





- 1: **procedure** FRODO.CPAPKE.ENC()
- 2:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_{\mathbf{E}}})$
- 3:  $\mathbf{\acute{S}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 4 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 4:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 5 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 5:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 6) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6: Compute  $\mathbf{\acute{B}} = \mathbf{\acute{S}} \times \mathbf{A} + \mathbf{\acute{E}}$
- 7: Compute  $\mathbf{V} = \mathbf{\acute{S}} \times \mathbf{B} + \mathbf{\acute{E}} + Frodo.Encode(\mu)$
- 8: Ciphertext  $\mathbf{C} \leftarrow (\mathbf{C}_1, \mathbf{C}_2) = (\mathbf{\acute{B}}, \mathbf{V})$
- 9: end procedure





- 1: **procedure** FRODO.CPAPKE.ENC()
- 2:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_{\mathbf{E}}})$
- 3:  $\mathbf{\acute{S}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 4 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 4:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 5 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 5:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 6) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6: Compute  $\mathbf{\acute{B}} = \mathbf{\acute{S}} \times \mathbf{A} + \mathbf{\acute{E}}$
- 7: Compute  $\mathbf{V} = \mathbf{\acute{S}} \times \mathbf{B} + \mathbf{\acute{E}} + Frodo.Encode(\mu)$
- 8: Ciphertext  $\mathbf{C} \leftarrow (\mathbf{C}_1, \mathbf{C}_2) = (\mathbf{\acute{B}}, \mathbf{V})$
- 9: end procedure





- 1: **procedure** FRODO.CPAPKE.ENC()
- 2:  $seed_{\mathbf{E}} \leftarrow U(\{0,1\}^{len_{\mathbf{E}}})$
- 3:  $\mathbf{\acute{S}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 4 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 4:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 5 \rightarrow \mathbf{R}) \in \mathbb{Z}_q^{\bar{m} \times n}$
- 5:  $\acute{\mathbf{E}} \leftarrow \mathsf{Frodo.SampleMatrix}(seed_{\mathbf{E}}, 6) \in \mathbb{Z}_q^{n \times \bar{n}}$
- 6: Compute  $\mathbf{\acute{B}} = \mathbf{\acute{S}} \times \mathbf{A} + \mathbf{\acute{E}}$
- 7: Compute  $\mathbf{V} = \mathbf{\acute{S}} \times \mathbf{B} + \mathbf{\acute{E}} + Frodo.Encode(\mu)$
- 8: Ciphertext  $\mathbf{C} \leftarrow (\mathbf{C}_1, \mathbf{C}_2) = (\mathbf{\acute{B}}, \mathbf{V})$
- 9: end procedure





1: procedure KYBER.CPAPKE.ENC( $pk \in \mathcal{B}^{d_t \cdot k \cdot n/8+32}$ ,  $m \in \mathcal{B}^{32}$ ,  $r \in \mathcal{B}^{32}$ )  $2 \cdot N = 0$ 3: For *i* from 0 to k-14:  $\mathbf{r}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N))$ 5: N := N + 16: EndFor 7: For *i* from 0 to k-18:  $\mathbf{e}_1 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N))$ 9: N := N + 110: EndFor 11: For *i* from 0 to k-1  $\mathbf{e}_2 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N))$ 12: EndFor 13:  $\hat{\mathbf{r}} = \mathsf{NTT}(\mathbf{r})$ 14:  $\mathbf{u} = \mathsf{NTT}^{-1}(\hat{a}^T * \hat{\mathbf{r}}) + \mathbf{e}_1$ 15:  $\mathbf{v} = \mathsf{NTT}^{-1}(\hat{t}^T * \hat{\mathbf{r}}) + \mathbf{e}_2 + \mathsf{Decode}_1(\mathsf{Decompose}_a(m, 1))$  $\begin{array}{ll} \mbox{16:} & \mathbf{c}_1 = {\sf Encode}_{d_u}({\sf Compress}_q(\mathbf{u},d_u)) \\ \mbox{17:} & \mathbf{c}_2 = {\sf Encode}_{d_v}({\sf Compress}_q(\mathbf{v},d_v)) \end{array}$ 18:  $c = (c_1, c_2)$ 19: end procedure







```
1: procedure KYBER.CPAPKE.ENC(pk \in \mathcal{B}^{d_t \cdot k \cdot n/8+32}, m \in \mathcal{B}^{32}, r \in \mathcal{B}^{32})
 2 \cdot N = 0
 3: For i from 0 to k-1
  4: \mathbf{r}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N \rightarrow R))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8: \mathbf{e}_1 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N \rightarrow R))
      N := N + 1
 9:
10: EndFor
11: For i from 0 to k-1 \mathbf{e}_2 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N))
12: EndFor
13: \hat{\mathbf{r}} = \mathsf{NTT}(\mathbf{r})
14: \mathbf{u} = \mathsf{NTT}^{-1}(\hat{a}^T * \hat{\mathbf{r}}) + \mathbf{e}_1
15: \mathbf{v} = \mathsf{NTT}^{-1}(\hat{t}^T * \hat{\mathbf{r}}) + \mathbf{e}_2 + \mathsf{Decode}_1(\mathsf{Decompose}_a(m, 1))
16: \mathbf{c}_1 = \mathsf{Encode}_{d_u}(\mathsf{Compress}_q(\mathbf{u}, d_u))

17: \mathbf{c}_2 = \mathsf{Encode}_{d_v}(\mathsf{Compress}_q(\mathbf{v}, d_v))
18: c = (c_1, c_2)
19: end procedure
```





```
1: procedure KYBER.CPAPKE.ENC(pk \in \mathcal{B}^{d_t \cdot k \cdot n/8+32}, m \in \mathcal{B}^{32}, r \in \mathcal{B}^{32})
 2 \cdot N = 0
 3: For i from 0 to k-1
  4: \mathbf{r}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N \rightarrow R))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8: \mathbf{e}_1 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N \rightarrow R))
      N := N + 1
 9:
10: EndFor
11: For i from 0 to k-1 \mathbf{e}_2 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N))
12: EndFor
13: \hat{\mathbf{r}} = \mathsf{NTT}(\mathbf{r})
14: \mathbf{u} = \mathsf{NTT}^{-1}(\hat{a}^T * \hat{\mathbf{r}}) + \mathbf{e}_1
15: \mathbf{v} = \mathsf{NTT}^{-1}(\hat{t}^T * \hat{\mathbf{r}}) + \mathbf{e}_2 + \mathsf{Decode}_1(\mathsf{Decompose}_a(m, 1))
16: \mathbf{c}_1 = \mathsf{Encode}_{d_u}(\mathsf{Compress}_q(\mathbf{u}, d_u))

17: \mathbf{c}_2 = \mathsf{Encode}_{d_v}(\mathsf{Compress}_q(\mathbf{v}, d_v))
18: c = (c_1, c_2)
19: end procedure
```





```
1: procedure KYBER.CPAPKE.ENC(pk \in \mathcal{B}^{d_t \cdot k \cdot n/8+32}, m \in \mathcal{B}^{32}, r \in \mathcal{B}^{32})
  2 \cdot N = 0
 3: For i from 0 to k-1
  4: \mathbf{r}[i] \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N \rightarrow R))
 5: N := N + 1
 6: EndFor
 7: For i from 0 to k-1
 8: \mathbf{e}_1 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N \rightarrow R))
       N := N + 1
 9:
10. EndFor
11: For i from 0 to k-1 \mathbf{e}_2 \leftarrow \mathsf{CBD}_n(\mathsf{PRF}(r, N))
12: EndFor
13: \hat{\mathbf{r}} = \mathsf{NTT}(\mathbf{r})
14: \mathbf{u} = \mathsf{NTT}^{-1}(\hat{a}^T * \hat{\mathbf{r}}) + \mathbf{e}_1
15: \mathbf{v} = \mathsf{NTT}^{-1}(\hat{t}^T * \hat{\mathbf{r}}) + \mathbf{e}_2 + \mathsf{Decode}_1(\mathsf{Decompose}_a(m, 1))
16: \mathbf{c}_1 = \mathsf{Encode}_{d_u}(\mathsf{Compress}_q(\mathbf{u}, d_u)) \overset{****}{\longrightarrow} \mathsf{Adds more error}

17: \mathbf{c}_2 = \mathsf{Encode}_{d_v}(\mathsf{Compress}_q(\mathbf{v}, d_v))
18: c = (c_1, c_2)
19: end procedure
```





# Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A **re-encapsulation** is performed in the decapsulation procedure to check for the validity of ciphertexts.






# Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A **re-encapsulation** is performed in the decapsulation procedure to check for the validity of ciphertexts.
- Thus, faults injected into the encapsulation procedure are detected during decapsulation.







# Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A **re-encapsulation** is performed in the decapsulation procedure to check for the validity of ciphertexts.
- Thus, faults injected into the encapsulation procedure are detected during decapsulation.
- How do we bypass this?







# Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A **re-encapsulation** is performed in the decapsulation procedure to check for the validity of ciphertexts.
- Thus, faults injected into the encapsulation procedure are detected during decapsulation.
- How do we bypass this?
- We observe that a fault attacker in a Man-In-The-Middle (MITM) setting can still mount the attack without being detected during decapsulation.





#### Message Recovery Attack over CCA-KEM schemes



Figure: Fault assisted MITM attack on CCA Secure KEM scheme







# Table of Contents

- 1 Context
- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
  - 7 Countermeasures

#### 8 Conclusion







# Experimental Validation on ARM Cortex-M4

- We target reference implementations from the *pqm4* benchmarking framework for PQC candidates on the ARM Cortex-M4 microcontroller.
- Implementations were ported to the STM32F4DISCOVERY board (DUT) housing the STM32F407 microcontroller.
- Clock Frequency: 24 MHz.







• We target the usage (not generation) of nonce in all reference implementations.







- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.







- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array  ${\cal A}$  to an XOF function.
- The nonce is stored as the last element of the array.







- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.









- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.









- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.









- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.









- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.



• For all the call instances to this XOF function, all the elements of the array A are the same except the nonce value.







- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.



- For all the call instances to this XOF function, all the elements of the array A are the same except the nonce value.
- If this *nonce-store* to the array is skipped, we are essentially using the same randomness to sample both S and E.



| ldr<br>stmia<br>strb.w<br>movs | r3,[r5,#28]<br>r4!,{r0,r1,r2,r3}<br>r7,[r6,#-132]!<br>r1,#1 | movs<br>add<br>strb.w<br>movs | r1,#1<br>r0,sp,#52<br>r9,[r6,#32]<br>r2,#33 |
|--------------------------------|-------------------------------------------------------------|-------------------------------|---------------------------------------------|
| mov                            | r0,r6                                                       | movs                          | r3,#0                                       |
|                                |                                                             |                               |                                             |

(a) Target operation in NewHope

(b) Target operation in Kyber

| lsrs<br>ldr<br>strb.w | r2,r7,#8<br>r3,[pc,#264]<br>r2,[sp,#7] | movs<br>ldr<br>strb.w | r1,#128<br>r0,[pc,#208]<br>r7,[sp,#44] |
|-----------------------|----------------------------------------|-----------------------|----------------------------------------|
| movw                  | r2,#4097                               | add                   | r1,sp,#12                              |
| mov                   | r1,sp                                  | add                   | r0,sp,#48                              |

(c) Target operation in Frodo

(d) Target operation in Dilithium





## Experimental Setup



Figure: Description of our EMFI setup







## Experimental Setup



Figure: (1) EM Pulse Generator (2) USB-Microscope (3) STM32M4F Discovery Board (DUT) (4) Arudino based Relay Shield (5) Controller Laptop (6) Oscilloscope (7) EM Pulse Injector (8) XYZ Motorized Table







### Experimental Setup



Figure: (a) Hand-made probe used for our EMFI setup (b) Probe placed over the  $\mathsf{DUT}$ 







- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.







- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.
- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.







- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.
- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.
- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.







- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.
- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.
- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.
- Voltage:150V-200V, Pulse Width = 12nsec, Rise-Time = 2 nsec.







- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.
- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.
- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.
- Voltage:150V-200V, Pulse Width = 12nsec, Rise-Time = 2 nsec.
- Faults were synchronized with the target operation using an internally generated trigger.





# Fault Complexity

| Attack Ob        | jective | Fault Complexity |           |       |         |        |      |
|------------------|---------|------------------|-----------|-------|---------|--------|------|
|                  | -       | NEW              | HOPE      |       | FRO     | DO     |      |
|                  |         | NEWHOPE512       | NEWHOPE10 | 24 Fr | odo-640 | Frodo- | 976  |
| Key Reco         | overy   | 1                | 1         |       | 1       | 1      |      |
| Message Re       | ecovery | 1                | 1         |       | 1       | 1      |      |
|                  |         | KYBER            |           |       | DIL     | ITHIUM |      |
|                  | KYBER51 | 2 KYBER768       | KYBER1024 | Weak  | Med.    | Rec.   | High |
| Key Recovery     | 2       | 3                | 4         | 2     | 3       | 4      | 5    |
| Message Recovery | 2       | 3                | 4         | -     | -       | -      | -    |







# Fault Complexity

| Attack Ob        | Attack Objective | Fault Complexity |           |       |         |        |      |
|------------------|------------------|------------------|-----------|-------|---------|--------|------|
|                  |                  |                  | HOPE      |       | FRO     | DO     |      |
|                  |                  | NEWHOPE512       | NEWHOPE10 | 24 F1 | odo-640 | Frodo- | 976  |
| Key Reco         | overy            | 1                | 1         |       | 1       | 1      |      |
| Message Re       | ecovery          | 1                | 1         |       | 1       | 1      |      |
|                  |                  | KYBER            |           |       | DIL     | THIUM  |      |
|                  | KYBER51          | L2 KYBER768      | KYBER1024 | Weak  | Med.    | Rec.   | High |
| Key Recovery     | 2                | 3                | 4         | 2     | 3       | 4      | 5    |
| Message Recovery | 2                | 3                | 4         | -     | -       | -      | -    |

• Security of Kyber is weakened because the induced fault has removed the hardness from the LWE problem.







# Fault Complexity

| Attack Ob        | bjective | Fault Complexity |           |       |         |         |          |
|------------------|----------|------------------|-----------|-------|---------|---------|----------|
|                  | _        | NEW              | HOPE      |       | FRO     | DO      |          |
|                  | N        | EWHOPE512        | NEWHOPE10 | 24 Fr | odo-640 | Frodo-9 | 976      |
| Key Reco         | overy    | 1                | 1         |       | 1       | 1       |          |
| Message Re       | ecovery  | 1                | 1         |       | 1       | 1       |          |
|                  |          | KYBER            |           |       | DIL     | ITHIUM  |          |
|                  | KYBER512 | 2 KYBER768       | KYBER1024 | Weak  | Med.    | Rec.    | High     |
| Key Recovery     | 2        | 3                | 4         | 2     | 3       | 4       | <b>5</b> |
| Message Recovery | 2        | 3                | 4         | -     | -       | -       | -        |

- Security of Kyber is weakened because the induced fault has removed the hardness from the LWE problem.
- If enough number of signatures corresponding to the same public-private key pair can be observed, then it can lead to a successful key recovery attack on Dilithium.





# Table of Contents

- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation

#### Countermeasures

8 Conclusion







## Countermeasures and Future Directions

- Usage of separate seeds for  ${\bf S}$  and  ${\bf E}$
- Frodo has updated its specifications as part of its second round submission by using separate seeds for S and E.
- Synchronization of faults with vulnerable operations.
- Study on weakened LWE instances in Kyber and Dilithium.







# Table of Contents

- 1 Context
- 2 Lattice based Crypto: Background
- 3 Fault Vulnerability
- 4 Key Recovery Attacks
- 5 Message Recovery Attacks
- 6 Experimental Validation
- Countermeasures

#### 8 Conclusion







#### Conclusion

- We identified fault-vulnerabilities due to usage of nonces in multiple LWE-based lattice schemes.
- We proposed key recovery attacks over NewHope, Frodo, Kyber and Dilithium and message recovery attacks over NewHope, Frodo and Kyber KEM schemes.
- Practical Validation of our attack through EMFI on implementations from *pqm4* library on the ARM Cortex-M4 microcontroller.
- We hope that nonces either be avoided or be used more carefully in the future.







# Thank you! Any questions?



NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

