
Higher-Order DCA against Standard
Side-Channel Countermeasures

Andrey Bogdanov 1 Matthieu Rivain 2 Philip S. Vejre 1 Junwei Wang 2,3,4

1Technical University of Denmark 2CryptoExperts
3University of Luxembourg 4University Paris 8

COSADE 2019, 4 April, 2019

Overview
1 � White-Box Context

2 � Differential Computation Analysis

3 � Side-Channel Countermeasures

4 � Higher-Order DCA

5 � Multivariate Higher-Order DCA

2

White-Box Threat Model
plaintext

ciphertext

black-box model

knowing the specification
observing I/O behavior

e.g. linear/differential cryptanalysis

plaintext

ciphertext

gray-box model

+ side-channel leakages
(power/EM/time/· · ·)

e.g. differential power analysis

plaintext

ciphertext

white-box model [SAC02]

fully controlling the binary
and its execution environment

3

White-Box Adversary
� Goal: to extract a cryptographic key, · · ·
� Where: from a software impl. of the cipher
� Who: malwares, co-hosted applications, user

themselves, · · ·
� How: (by all kinds of means)

I analyze the code
I spy on the memory
I interfere the execution
I · · ·

No provably secure white-box scheme for standard block ciphers.
4

Typical Applications
Digital Content Distribution

videos, music, games, e-books, · · ·

Host Card Emulation

mobile payment without a secure element

5

Differential Computation Analysis [CHES16]
plaintext

ciphertext

gray-box model

side-channel leakages (noisy)
e.g. power/EM/time/· · ·

plaintext

ciphertext

white-box model

computational leakage (perfect)
e.g. registers/accessed memory/· · ·

7

Differential Computation Analysis [CHES16]

Differential power analysis techniques on computational leakages

group by predictionscollect traces

ϕk(·) = 0

ϕk (·) = 1

average trace differential trace

Implying strong linear correlation between the sensitive vari-
ables and the leaked samples in the computational traces.

8

Masking
� Split a sensitive variable x in d shares s.t.

x = x1 ⊕ x2 ⊕ · · · ⊕ xd

Masking

original states masked states

� Any combination of d − 1 shares is independent with x .

10

Shuffling
� Time shuffling: randomize the order of computations

· · ·

· · ·

iteration in normal order

iteration in randomized order

� But no enough: traces can be memory aligned
� Memory shuffling: randomize the memory locations of shares

masked states memory shuffled states

memory shuffling

11

Masking and Shuffling: Security
� No external random source
� Security requirements (informally) for PRNG (seeded by the input plaintext):

I Pseudorandomness: unpredictable outputs
I Obscurity: hiding design
I Obfuscation: preventing reverse-engineering

� Masking is good enough to prevent DCA.
� However, still vulnerable to linear decoding analysis (LDA)

[ia.cr/2018/098; AC18]
� Necessary to introduce noise

What about masking + shuffling?
12

This Work

� We quantify the security brought by masking and shuffling for a passive
adversary by introducing
I the higher-order variant of DCA attack
I and an optimized multivariate version

� We analyze both attacks and verify our results by simulations
� We showcase the masking and shuffling orders that should be taken in

practice

13

DCA: a Formal Description
� N × t matrix (vi ,j)i ,j : N computational traces of t time slots
� ϕk(x): key dependent predictions
� C: correlation measurement

γk = max1≤j≤t C
(

(vi ,j)i ,
(
ϕk(xi)

)
i

)
� Success probability:

psucc = Pr (argmaxk∈Kγk = k∗) .

15

Introducing Higher-Order DCA

� Trace pre-processing: a d-th order traces contains q =
(

t
d

)
points:

· · ·

ψ(, , · · · ,)

j1 j2 jd

� Perform DCA attacks on the higher-order traces

16

Higher-Order DCA against Masking
If only using masking:

� ∃ fixed j∗1 < · · · < j∗d s.t. ϕk∗(x) = vj∗
1
⊕ · · · ⊕ vj∗

d
for all traces

� Hence, the natural combination function is
ψ(vj1 , · · · , vjd) = vj1 ⊕ · · · ⊕ vjd

� Correlation measurement
Ck = #traces s.t. ϕk(x) = vj1 ⊕ · · · ⊕ vjd

� Even for small N ,

γk = max
j

Ck satisfys
{

= N if k = k∗

< N if k = k×

17

HO-DCA against Masking and Shuffling
If using both masking and shuffling:

� @ fixed j∗1 < · · · < j∗d s.t. ϕk∗(x) = vj∗
1
⊕ · · · ⊕ vj∗

d
for all traces

� More traces are required to be successful:

masking + shuffling

masking only

� Limitation: each sample in the higher-order traces is considered
independently

18

Multivariate Higher-Order DCA
� The multivariate attack optimizes the analysis by exploiting joint information

of the higher-order samples on the secrets
� Our proposal is based on a maximum likelihood distinguisher

γk = Pr
(

K = k|(Vi)i = (vi)i ∧ (Xi)i = (xi)i
)

� We show that
γk ∝

N∏
i=1

Ck(vi , xi)

where the counter
Ck(v , x) := #d-tuples s.t. vj1 ⊕ · · · ⊕ vjd = ϕk(x) in one trace.

20

Analysis of Multivariate HO-DCA
� Goal: to compute the success rate

Pr(∀k× 6= k∗, γk∗ > γk×) = Pr(γk∗ > γk×)|K|−1

� Assumption: each shuffled trace consists of d shares + uniform variables
elsewhere

� We define the zero-counter event
Zk = {∃ a trace s.t. Ck(v , x) = 0}

� By the law of total probability
Pr(γk∗ > γk×) = Pr(γk∗ > γk×|Zk×) + Pr(γk∗ > γk×|¬Zk×)

I Zk× happens =⇒ γk∗ > γk× = 0

21

µ µ+ 1

Ck× Ck∗

Zk× does not Happen
� It is easy to show that

Pr(γk∗ > γk× |¬Zk×) = Pr
(

1
N

N∑
i=1

(log Ck∗ − log Ck×) > 0|¬Zk×

)

� Approximately, Ck∗ ∼ N (µ + 1, µ) and Ck× ∼ N (µ, µ)

� Thanks to central limit theorem and Taylor expansion

psucc = Θ
erf

1
2

√√√√ N(
t
d

)


� Implying the trace complexity N = O
((

t
d

))
22

Experimental Verification
� The analysis involves approximations, e.g.:

I ideal assumption on the traces
I Gaussian approximations of the counters
I Taylor expansion truncation, etc

� The accuracy is verified by simulations.

0 100 200 300 400 500 600 700 800

0.5

0.6

0.7

0.8

0.9

d = 3

#plaintexts

p
ro
b
ab

il
it
y

t = 16 t = 24 t = 32
t = 40 t = 48 measured
modeled

23

Attacking Complexity
� Trace complexity: N = O

((
t
d

))
.

� Computation complexity: O
(
|K| · N ·

(
t
d

))
= O

(
|K| ·

(
t
d

)2
)

.
� A 7-th order masking will bring approximately 85-bit security.

Table: d-th order attacks to achieve 90% success probability, where |K| = 256.

d log2 N log2 time d log2 N log2 time d log2 N log2 time
3 10.6 32.7 5 21.0 53.5 7 31.6 74.6
4 15.8 43.1 6 26.3 64.1 8 36.9 85.3

24

Conclusion
� DCA is an adaption of DPA attack
� It is natural to adapt classical DPA countermeasures
� We propose to higher-order DCA attacks to analyze the effectiveness
� We give close formulae for their success rates and we verify them by

simulations
� The security level of this approach is quantified:

I trace complexity: N = O
((t

d
))

I computation complexity: O
(
|K| ·

(t
d
)2)

� Attackers are forced to perform active attack / reverse engineering

25

Thank You !

	White-Box Context
	Differential Computation Analysis
	Differential Computation Analysis (DCA)
	Internal Encoding Countermeasure

	Side-Channel Countermeasures
	Higher-Order DCA
	Multivariate Higher-Order DCA

