
Fast Analytical Rank Estimation

Liron David and Prof. Avishai Wool

School of Electrical Engineering

Tel-Aviv University

COSADE 2019

Our Goal

2

Given an implementation of a symmetric encryption algorithm

and the secret key

Our goal is: To estimate the strength of the secret key

against side channel attacks

$%$#@!@#$%^&*&^%$%^&%^%#@$%^&$#@$%^&#@!#$!~!#%&$*&!^$%^&$#@$%^&#@!#$!~!

Side Channel Attack

128 bits

Secret Key

3

Side Channel Attack

Secret Key

4

Divide-and-Conquer

The attacker reveals a small part of bits each time

• Denoted by subkeys

$%$#@!@#$%^&*&^%$%^&%^%#@$%^&$#@$%^&#@!#$!~!#%&$*&!^$%^&$#@$%^&#@!#$!~!

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

Secret Key

00000000

00000001

00000010

00000011

Side Channel Attack

00000100

00000101

11111110

11111111

…

Subkeys

0.002

0.00001

0.004

0.003

0.0004

0.0002

0.00005

0.00004

Probabilities

00000110

00000111

00001000

0.001

0.003

0.002

$%$#@!@#
8 bits

@$%^#&*!
8 bits

^*$*$&@%
8 bits

The first Subkey

5

Secret Key

Side Channel Attack

…

Subkeys

00000011 0.002

00000000 0.00001

00000100 0.004
00000101 0.003

11111110 0.0004
11111111 0.0002

00000010 0.00005

00000001 0.00004

00000110 0.001
00000111 0.003

00001000 0.002

$%$#@!@#
8 bits

@$%^#&*!
8 bits

^*$*$&@%
8 bits

We sort the subkeys
according to
their probabilities
in decreasing order…

The first Subkey

Probabilities

6

Secret Key

Side Channel Attack

00000000

11111111

$%$#@!@#
8 bits

@$%^#&*!
8 bits

^*$*$&@%
8 bits

00010100

10110111

11011011

01000011

01110000

11011010

10101110

01001111

10100110

Sorted subkeys
in decreasing
order of
probabilites

0.000001

0.000001

0.0010

0.005

0.005

0.0045

0.0043

0.003

0.003

0.002

0.0015

… …

(P1,K1)

The first Subkey

7

Secret Key

Side Channel Attack

00000000

11111111

$%$#@!@#
8 bits

@$%^#&*!
8 bits

^*$*$&@%
8 bits

00010100

10110111

11011011

01000011

01110000

11011010

10101110

01001111

10100110

0.000001

0.000001

0.0010

0.005

0.005

0.0045

0.0043

0.003

0.003

0.002

0.0015

00000000

11111111

00010100

10110111

11011011

01000011

01110000

11011010

10101110

01001111

10100110

0.000001

0.000001

0.0010

0.005

0.005

0.0045

0.0043

0.003

0.003

0.002

0.0015
… … … …

The Second Subkey

(P1,K1) (P2,K2)

Sorted subkeys
in decreasing
order of
probabilites

8

Side Channel Attack

• d independent subkey spaces
(Ki,Pi) each of size N

• sorted in decreasing order of
proabilities.

9

(P1,K1) (P2,K2) (P3,K3) (Pd,Kd)…

Side Channel Attack

• The attacker goes over the full keys

• in sorted order from the most likely
to the least,

• till he reaches the correct key.

10

(P1,K1) (P2,K2) (P3,K3) (Pd,Kd)…

(P1…d,K1…d)
The probability of a full key is defined
as the product of its subkey’s
probabilities.

Side Channel Attack

An important question is:

How many full keys the attacker needs
to try before he reaches the correct
key.

This allows estimating the strength of
the chosen secret key after an attack
has been performed.

11

(P1,K1) (P2,K2) (P3,K3) (Pd,Kd)…

(P1…d,K1…d)

Side Channel Attack

So assume we know

• The correct key k* and its probability
p*

• The d subkey spaces (Ki,Pi)

The goal :

to estimate the number of full keys
with probability higher than p*

12

(P1,K1) (P2,K2) (P3,K3) (Pd,Kd)…

(P1…d,K1…d)

This is rank(k*)

Side Channel Attack

• The optimal solution

• enumerates and counts the full keys
in optimal-order

• till reaches to k*

13

(P1,K1) (P2,K2) (P3,K3) (Pd,Kd)…

(P1…d,K1…d)

Side Channel Attack

• However, key space size is 2128

• Enumerating the whole key space in
optimal-order is impossible

• Hence, estimating a rank without
enumeration is of great interest.

14

(P1,K1) (P2,K2) (P3,K3) (Pd,Kd)…

(P1…d,K1…d)

Our Rank Estimation: Motivation for d=2

𝑃2

𝑃1

Our Rank Estimation: Motivation for d=2

𝑃2

𝑃1
𝑓2

𝑓1

Upper bound each 𝑃𝑖
by an integrable function 𝑓𝑖 s.t

𝑃𝑖 𝑥 ≤ 𝑓𝑖 𝑥 ∀𝑥 ≤ 𝑁

∀𝑥, 𝑦 ≤ 𝑁

𝑃1 𝑥 ⋅ 𝑃2 𝑦 ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

Motivation: d=2
𝑃2𝑃1

𝑓2𝑓1
∀𝑥 𝑃1 𝑥 ≤ 𝑓1 𝑥 ∀𝑥 𝑃2 𝑥 ≤ 𝑓2 𝑥

∀𝑥, 𝑦 ≤ 𝑁

𝑝∗ ≤ 𝑃1 𝑥 ⋅ 𝑃2 𝑦 ⟹ 𝑝∗ ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

∀𝑥, 𝑦 ≤ 𝑁

𝑃1 𝑥 ⋅ 𝑃2 𝑦 ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

Motivation: d=2
𝑃2𝑃1

𝑓2𝑓1
∀𝑥 𝑃1 𝑥 ≤ 𝑓1 𝑥 ∀𝑥 𝑃2 𝑥 ≤ 𝑓2 𝑥

∀𝑥, 𝑦 ≤ 𝑁

𝑝∗ ≤ 𝑃1 𝑥 ⋅ 𝑃2 𝑦 ⟹ 𝑝∗ ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

The number of 𝑥, 𝑦 s.t

𝑝∗ ≤ 𝑃1 𝑥 ⋅ 𝑃2 𝑦
≤

The number of 𝑥, 𝑦 s.t

𝑝∗ ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

∀𝑥, 𝑦 ≤ 𝑁

𝑃1 𝑥 ⋅ 𝑃2 𝑦 ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

Motivation: d=2
𝑃2𝑃1

𝑓2𝑓1
∀𝑥 𝑃1 𝑥 ≤ 𝑓1 𝑥 ∀𝑥 𝑃2 𝑥 ≤ 𝑓2 𝑥

∀𝑥, 𝑦 ≤ 𝑁

𝑝∗ ≤ 𝑃1 𝑥 ⋅ 𝑃2 𝑦 ⟹ 𝑝∗ ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

The number of 𝑥, 𝑦 s.t

𝑝∗ ≤ 𝑃1 𝑥 ⋅ 𝑃2 𝑦
≤

The number of 𝑥, 𝑦 s.t

𝑝∗ ≤ 𝑓1 𝑥 ⋅ 𝑓2 𝑦

න
0

𝑁

න
0

𝑁

1𝑑𝑥 𝑑𝑦

𝑓1 𝑥 ⋅ 𝑓2 𝑦 ≥ 𝑝∗

rank(𝑘∗) ≤

Instantiating the framework

For 𝑓 we select the Pareto function:

• Long tail

• Easy to calculate mutiple integral

𝑓 𝑥 =
𝑎

𝑥𝛼

Choosing the best Pareto upper bound

𝑃

Given a non-increasing probability distribution 𝑃

Goal: To find a tight Pareto upper bound for 𝑃

Choosing the best Pareto upper bound

𝑃

Given a non-increasing probability distribution 𝑃

Goal: To find a tight Pareto upper bound for 𝑃

We choose an upper bound 𝒇 that anchors at two indexes,
i.e., there exists two indexes 𝑙, 𝑟 s.t

𝑓 𝑙 = 𝑃[𝑙] , 𝑓 𝑟 = 𝑃[𝑟]

𝑓

Choosing the best Pareto upper bound

Given a non-increasing probability distribution 𝑃

there exist 𝒎 ≪ 𝑵 indexes 𝒕𝟏, . . , 𝒕𝒎 s.t

Every Pareto upper bound function of 𝑷 that is anchored at
some 𝑙 < 𝑟 obeys 𝑙 = 𝑡𝑗 and 𝑟 = 𝑡𝑗+1 for 1 ≤ 𝑗 < 𝑚

Choosing the best Pareto upper bound

Given a non-increasing probability distribution 𝑃

there exist 𝒎 ≪ 𝑵 indexes 𝒕𝟏, . . , 𝒕𝒎 s.t

Every Pareto upper bound function of 𝑷 that is anchored at
some 𝑙 < 𝑟 obeys 𝑙 = 𝑡𝑗 and 𝑟 = 𝑡𝑗+1 for 1 ≤ 𝑗 < 𝑚

Choosing the best Pareto upper bound

Given a non-increasing probability distribution 𝑃

there exist 𝒎 ≪ 𝑵 indexes 𝒕𝟏, . . , 𝒕𝒎 s.t

The only upper bound Pareto functions of 𝑷 are
Those who anchor at indexes 𝒕𝒊, 𝒕𝒊+𝟏 for 1 ≤ 𝑖 < 𝑚

Given a non-increasing probability distribution 𝑃

there exist 𝒎 ≪ 𝑵 indexes 𝒕𝟏, . . , 𝒕𝒎 s.t

Every Pareto upper bound function of 𝑷 that is anchored at
some 𝑙 < 𝑟 obeys 𝑙 = 𝑡𝑗 and 𝑟 = 𝑡𝑗+1 for 1 ≤ 𝑗 < 𝑚

Choosing the best Pareto upper bound

Given a non-increasing probability distribution 𝑃

there exist 𝒎 ≪ 𝑵 indexes 𝒕𝟏, . . , 𝒕𝒎 s.t

Every Pareto upper bound function of 𝑷 that is anchored at
some 𝑙 < 𝑟 obeys 𝑙 = 𝑡𝑗 and 𝑟 = 𝑡𝑗+1 for 1 ≤ 𝑗 < 𝑚

Choosing the best Pareto upper bound

Given a non-increasing probability distribution 𝑃

there exist 𝒎 ≪ 𝑵 indexes 𝒕𝟏, . . , 𝒕𝒎 s.t

Every Pareto upper bound function of 𝑷 that is anchored at
some 𝑙 < 𝑟 obeys 𝑙 = 𝑡𝑗 and 𝑟 = 𝑡𝑗+1 for 1 ≤ 𝑗 < 𝑚

Choosing the best Pareto upper bound

The asymptotic running time of finding all the Pareto upper bounds

of a given 𝑃 is 𝑶(𝒎𝑵).

• Since typically 𝒎 ≪ 𝑵 the algorithm is almost linear in 𝑵

and very quick in practice.

• Furthermore, our implementation is very efficient:

it allows skipping over hundreds of not relevant candidates

which dramaticly impacts in practice.

Choosing the best Pareto upper bound

After finding multiple candidates for Pareto upper bound of a given P,

Choosing the best Pareto upper bound

We need to select the ‘best’ function which lead to a tight bound.

Choosing the best Pareto upper bound

We chose the following criteria:

Given

• 𝑃 - a non-increasing subkey probability distribution

• 𝑘 - the index of the correct subkey in 𝑃

Choose the Pareto upper bound function 𝑓 s.t

𝒇(𝒌) is the closest to 𝑷[𝒌]

Choosing the best Pareto upper bound

𝒇(𝒌) is the closest to 𝑷[𝒌]

Choosing the best Pareto upper bound

𝒇(𝒌) is the closest to 𝑷[𝒌]

Estimating the Volume for d≥2

After we find the ‘best’ Pareto upper bound function 𝑓𝑖 for each 𝑃𝑖

We need to calculate the number of (𝑥1 , 𝑥2 , … , 𝑥𝑑) s.t.

𝑓1 𝑥1 ⋅ 𝑓2 𝑥2 ⋅ … ⋅ 𝑓𝑑 𝑥𝑑 ≥ 𝑝∗

using the multiple integral: න
0

𝑁

න
0

𝑁

…න
0

𝑁

1𝑑𝑥1 𝑑𝑥2…𝑑𝑥𝑑

𝑓1 𝑥1 ⋅ 𝑓2 𝑥2 ⋅ … ⋅ 𝑓𝑑 𝑥𝑑 ≥ 𝑝∗

∀𝑥 𝑃𝑖 𝑥 ≤ 𝑓𝑖(𝑥) =
𝑎𝑖
𝑥𝛼𝑖

Estimating the Volume for d≥2

We solve the multiple integral:

using the Pareto upper bound functions

We get the following closed formula:

න
0

𝑁

න
0

𝑁

…න
0

𝑁

1 𝑑𝑥1 𝑑𝑥2…𝑑𝑥𝑑

𝑓1 𝑥1 ⋅ 𝑓2 𝑥2 ⋅ … ⋅ 𝑓𝑑 𝑥𝑑 ≥ 𝑝∗

෍

𝑖=1

𝑑
1

𝑝∗
⋅ෑ

𝑗=1

𝑑

𝑎𝑗

1
𝛼𝑖

⋅ ෑ

𝑗=1,𝑗≠𝑖

𝑑
𝛼𝑖

𝛼𝑖 − 𝛼𝑗
⋅ 𝑁

𝛼𝑖−𝛼𝑗
𝛼𝑖rank(𝑝∗) ≤

𝑓𝑖(𝑥) =
𝑎𝑖
𝑥𝛼𝑖

PRank: The Pareto Rank Estimation Algorithm

Given:

• 𝑑 probability distiburions 𝑃1 , . . , 𝑃𝑑
• The correct key 𝑘∗ = (𝑘1 , … , 𝑘𝑑) and its probability 𝑝∗

for 𝑖 = 1 to 𝑑:

𝑎𝑖 , 𝛼𝑖  upper bound 𝑃𝑖 by a Pareto upper bound function

compute the closed formula: ෍

𝑖=1

𝑑
1

𝑝∗
⋅ෑ

𝑗=1

𝑑

𝑎𝑗

1
𝛼𝑖

⋅ ෑ

𝑗=1,𝑗≠𝑖

𝑑
𝛼𝑖

𝛼𝑖 − 𝛼𝑗
⋅ 𝑁

𝛼𝑖−𝛼𝑗
𝛼𝑖

Prank Algorithm:

Theoretical Worst-case Performance

for 𝑖 = 1 to 𝑑:

𝑎𝑖 , 𝛼𝑖  upper bound 𝑃𝑖 by a Pareto upper bound function

compute the closed formula:

Space Complexity:

Only needs to keep 𝑎𝑖 , 𝛼𝑖 for every 1 ≤ 𝑖 ≤ 𝑑

Therefore 𝑶(𝒅).

෍

𝑖=1

𝑑
1

𝑝∗
⋅ෑ

𝑗=1

𝑑

𝑎𝑗

1
𝛼𝑖

⋅ ෑ

𝑗=1,𝑗≠𝑖

𝑑
𝛼𝑖

𝛼𝑖 − 𝛼𝑗
⋅ 𝑁

𝛼𝑖−𝛼𝑗
𝛼𝑖

Prank Algorithm

Theoretical Worst-case Performance

for 𝑖 = 1 to 𝑑:

𝑎𝑖 , 𝛼𝑖  upper bound 𝑃𝑖 by a Pareto upper bound function

compute the closed formula:

Running Time:

Calculating the closed formula: 𝑶(𝒅𝟐)

𝑑 additions each consists of 𝑑 multiplications and 𝑑 real-value power.

෍

𝑖=1

𝑑
1

𝑝∗
⋅ෑ

𝑗=1

𝑑

𝑎𝑗

1
𝛼𝑖

⋅ ෑ

𝑗=1,𝑗≠𝑖

𝑑
𝛼𝑖

𝛼𝑖 − 𝛼𝑗
⋅ 𝑁

𝛼𝑖−𝛼𝑗
𝛼𝑖

Prank Algorithm

Theoretical Worst-case Performance

for 𝑖 = 1 to 𝑑:

𝑎𝑖 , 𝛼𝑖  upper bound 𝑃𝑖 by a Pareto upper bound function

compute the closed formula:

Running Time:

Finding the best Pareto upper bound for each 𝑃𝑖 is 𝑶(𝒎𝒊 ⋅ 𝑵).

Since typically ∀𝑖 𝑚𝑖≪ N,

the algorithm is almost linear in 𝒅𝑵 and very quick in practice.

෍

𝑖=1

𝑑
1

𝑝∗
⋅ෑ

𝑗=1

𝑑

𝑎𝑗

1
𝛼𝑖

⋅ ෑ

𝑗=1,𝑗≠𝑖

𝑑
𝛼𝑖

𝛼𝑖 − 𝛼𝑗
⋅ 𝑁

𝛼𝑖−𝛼𝑗
𝛼𝑖

Prank Algorithm

Performance Evaluation

• We compared our new PRank algorithm

with the histogram algorithm of Glowacz et al. [GGPSS15].

• We implemented both in Matlab.

• Our PRank code is available in gitHub.

Performance Evaluation

• We run PRank algorithm on 611 traces gathered from a specific SCA.

• The SCA was against AES with 128-bits keys.

• Each set in the corpus consists of the correct secret key and
16 distributions, one per subkey.

• The distributions are sorted in non-increasing order of probability,
each of length 28.

Performance Evaluation

• We measured the time and the accuracy for each trace

using PRank and the histograms rank estimation,

in two different configurations.

• d=16 and n=28

• d=8 and n=216

We used the histogram rank as the x-axis in our resulting graphs.

Space Utilization
PRank Histograms

The memory consumption of PRank algorithm
is drastically lower than the histogram space consumption.

The PRank space consumption is trivial 𝟑𝒅
The histogram space requirements are around 2𝐵𝑑

Runtime Analysis

The PRank running time consists of:
• finding the Pareto upper bound function of each probability distribution
• calculating the closed formula given the secret key.

The histogram running time consists of:
• converting each probability distribution into a histogram
• finding the sum of the corresponding bins given the secret key.

Runtime Analysis
HistogramsPRank

PRank, for both d=8 and d=16,
typically

takes only a few milliseconds to
complete

and runs faster than the
Histograms in its 4
configurations.

log scale

B=5K, d=8
B=5K, d=16

B=50K, d=8
B=50K, d=16

d=16

d=8

Runtime Analysis

d=16

HistogramsPRank
Prank with d=16 runs faster than
PRank with d=8

since the length N of each
distribution is shorter.

log scale

B=5K, d=8
B=5K, d=16

B=50K, d=8
B=50K, d=16

d=8

Bound Tightness

The Figure illustrates the PRank
upper bound with d=16, d=8 and
the histogram rank,
all in number of bits (log2).

x-axis is the number of bits of
histogram rank, hence its curve is a
straight line.

The figure clearly shows that it is advantageous
to reduce the dimension d.

PRank with d=16PRank with d=8

Histograms

Bound Tightness

The accuracy of PRank’s estimation is
quite good:

for ranks between 280–2100 :
The median PRank bound
is less than 10 bits above the
histogram rank.

PRank with d=16PRank with d=8

Histograms

Bound Tightness

The accuracy of PRank’s estimation is
quite good:

for high ranks above 2100:
The median PRank bound is
less than 4 bits more.

PRank with d=16PRank with d=8

Histograms

Bound Tightness

The accuracy of PRank’s estimation is
quite good:

For small ranks, around 230:

PRank gave a bound which is roughly
20 bits greater than that of the
histogram.

However such ranks are within reach
of key enumeration so rank
estimation is not particularly
interesting there.

PRank with d=16PRank with d=8

Histograms

Bound Tightness

We chose Pareto upper bound functions.

This choise clearly effects the received accuracy.

However,

• one could employ our framework

• with other classes of upper-bound functions

• and possibly achieve even better results.

We leave this direction for future research.

Conclusions

• In this paper we proposed a new framework for rank estimation,
that is conceptually simple, faster and use less memory than
previous proposals.

• Our main idea is to bound each subkey distribution by an analytical
function, and then estimate the rank by a closed formula.

• To instantiate the framework we use Pareto functions to upper-
bound the empirical distributions.

Conclusions

• We fully characterized such upper-bounding functions and
developed an efficient algorithm to find them.

• We then used Pareto functions to develop a new explicit closed
formula upper bound on the rank of a given key.

• Combined with the algorithm to find the upper-bounding Pareto
functions, we obtained a rank upper-bound estimation algorithm we
call PRank.

