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KLEIN - Round Function

e Gong et al. 2012 [3]

¢ Round function similar to AES

e Substitution Permutation Network
* Key sizes of {64, 80, 96} bit

® Block size of 64 bit

e State of 4 bit nibbles

¢ |nvolutive 4 bit S-Box

e All functions are linear, except
SubNibbles

¢ All rounds are equal
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KLEIN - Key Schedule

Balanced Feistel network
Byte oriented

State size of {64, 80, 96} bit
Circular left shift by 1 byte
Addition on GF(2)

Addition with round counter j
Reuse S-Box (round function)
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Overview
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DFA - State

e Similar [5-7] (AES)

® Applicable to all Variants

e Assume byte oriented state
¢ Random byte fault model

® 4 possible fault locations

¢ Recoverable half of ARKF
depends on fault location

® MixBytes distributes the fault
over one half!
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Modified Representation of KLEIN
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Modified Representation of KLEIN
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Application of invMixBytes to the last round key required
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DFA - Key Schedule

Similar to the attacks on the AES key schedule [1, 2, 4]
Applicable to KLEIN-64

Random byte fault model

Two possible positions to inject a fault

® Recovery of the whole state

Fault Location
* Problem:
» Limited fault propagation of the round function
¢ |dea:

» Exploit Feistel structure of the key schedule
» Choose fault location to be within a path of only linear functions
» Cancel out the fault asap
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Fault Propagation Key Schedule |
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Fault Propagation Key Schedule I
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Fault Propagation Key Schedule Il

[o[1[]:2[a] [4 5 [6 7] re
¢
© ©

(o[ + A 3] [«]5s]6]7]
- +)
+
Q

(ol T2[s] [a]s [S@T 7] ren

¢
Gruber and Selmke | Differential Fault Attacks on KLEIN 8/20



Fault Propagation State

Fault from the key schedule
Two bytes are perturbed with A

One byte is perturbed with
f1 + A

Right half of ARKR+1 is
perturbed (modified rep.)

ARKF+1 s observable
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Attack on the Substitution Layer

¢ Objective:
» Recovery of X
¢ Conditions:
» AC, the S-Box is known
> K is constant
» X, AX is variable
¢ Approach:
» Exhaustive search X, AX
» Exploit relationsship between
AX and AY (DDT)

AC = SubByte(X) + SubByte(X + AX) = filter(X, AX)
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Approach |
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Example: Observable faults, bytes under attack
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Approach Il

ARKR
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Approach Il
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Approach Il
ARKR

SBR =
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Approach Il

F, = filter(ARK], ,)
Fs = filter(ARKE,3 - )

Tooss = {ARK{ x ARKL x {1,...,255}}
Tvalia = {(X, ¥, f) € Tposs | F4 = filter(x, f) A Fs = filter(y,3 - )}
ARK = { x| (x,y.f) € Toaig }
ARKS = {y | (x,y.f) € Tvaia } (2)
b={f|(x,y,f) € Tvaia }
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Simulation |

¢ Implemented in Python, core of the attack as C-Extension for Python
e Simulated on an desktop CPU !

e Amount of RAM can be neglected

e Attack requires up to 3 minutes

Approach

1. Perform 1 correct encryption

2. Perform 1002 faulty encryptions

3. Store the remaining brute force complexity for the n-th faulty encryption

"Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
2100 was found to be a reliable upper bound
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Simulation I
State Key schedule
Injection strategy one half key schedule
Decrease in complexitiy 2% to 20 (one half) 254 to 2%2 (both halves)
# faulty encryptions 5 4

Remaining complexity 2% (the other half) 232 (both halves)
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Simulation IlI

Attack State Attack Key Schedule
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Evaluation - DUT?

ARM Cortex-M0
STM32F051R8T6

64 Kbytes of Flash memory

8 Kbytes of SRAM

Running at 8 MHz

PLL disabled

® Minimize usage of peripherals
front side decapped

i [ : NN a6
*C |mp|ementat|0n 'LQ ¢ u\(\ \

3See extended version of original paper
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Evaluation - Attack - Key Schedule

Settings
e Temporal: L
» Vary temporal location in Classification
50 ns steps ® no effect
e Spatial: ¢ exploitable fault
> Area2.5mm x 2.5mm e unusable
» 0.1 mm per step (675 o t
locations) rese
» 108 injections at each Fault exploitation probability
coordinate
e EMFI: # exploitable faults
| Pew = 108

» Discharge voltage 330 V fixed
» Discharge duration 10 ns fixed
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Evaluation - Attack - Key Schedule - Results

Classification Fault exploitation Probability
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Evaluation - Attack - Key Schedule - Results

Fault exploitation Probability
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Conclusion

* DFA on the state of KLEIN requires five faulty encryptions
¢ DFA on the key schedule of KLEIN-64 requires four faulty encryptions
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Thank you for your attention!

m.gruber@tum.de
https://www.sec.ei.tum.de
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Evaluation - EMFI - Setup

USB usB

Control Board
Powercycle

Trigger

Gruber and Selmke | Differential Fault Attacks on KLEIN

20/20



Modified Representation of KLEIN

Algorithm 1 KLEIN

Algorithm 2 KLEIN modified

1. sk «+ KEY
2: STATE «+ PLAINTEXT
3: fori=1to Rdo

: en

AddRoundKey(STATE, sk')
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)

ski*1 « KeySchedule(sk', i)
d for

14:
15: CIPHERTEXT < AddRoundKey(STATE, skfi*1)

1: sk' « KEY

STATE « PLAINTEXT

fori=1toR—-1do
AddRoundKey(STATE, sk')
SubBytes(STATE)
RotateBytes(STATE)
MixBytes(STATE)
ski*1 « KeySchedule(sk', i)

end for

10: AddRoundKey(STATE, sk”)

11: SubBytes(STATE)

12: RotateBytes(STATE)

13: skf*1 « KeySchedule(sk", R)

14: AddRoundKey(STATE, invMixBytes(sk+1))

15: CIPHERTEXT < MixBytes(STATE)

n

NG LR

©

Gruber and Selmke | Differential Fault Attacks on KLEIN

20/20



	KLEIN
	KLEIN - Key Schedule

	DFA - State
	Modified Representation of KLEIN

	DFA - Key Schedule
	Simulation
	Practical Evaluation
	Conclusion
	References

