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Background

 High demand for secure LSI authentication

 Physically unclonable function (PUF) is expected to 

prevent counterfeiting LSIs

 Major features for authentication: Stability and Uniformity

What if PUF response is unstable and biased?

Uniformity

p0: Occurrence probability of 0

p1: Occurrence probability of 1

A response 10… 10 1

p0≒ p1

0

Stability

R(1)＝R(2)＝…＝R(t)
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PUFy
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R(t)

…
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Response

If x(1) =x(2)=…=x(t) , then

…
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 Problems on unstable and biased PUF response

 Helper data leaks information about seed (entropy loss) 

 Difficult to extract entropy from unstable response

PUF-based key generation with Fuzzy extractor (FE)
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Extraction of PUF response 

 Conventional methods for extracting stable and

uniform response from unstable and biased PUFs

 Multiple-valued response

– Consider random (unstable) cell

as stable cell to output third value

– Higher entropy than binary

 Debiasing

– Debiased response would have full-entropy

– Applied to PUF response prior to FE

Multiple-valued response cannot work with FE 

 Conventional FEs can accept only binary inputs

 Limitation of application scenarios

PUFx R

Challenge Response

R = 01?011??1??0
?: Random cell



This work

 Key trick

 Multiple-valued debiasing

– Input: multiple-valued response

– Output: binary response that can be applied to FE

 Results

 Proposed method can extract 36% longer full-entropy 

response than conventional one

 Application to authentication with FE

– 100% successful authentication even in some cases 

where conventional method fails

Efficient extraction of stable and uniform response

from unstable and biased PUFs
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Unstable PUF

 n-bit PUF consists of n cells

 Each cell outputs one-bit response at a measurement

 Two types of cells if same challenge is repeated

 Constant cell: always 0 or always 1

 Random cell: 0 or 1 at random

 Random cell is not preferable, because…

 Cannot be used as response

 reduce the stability of PUF response
L-PUF Response

Challenge
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Use of random cell: multiple-valued response

 Detect random cell and consider it as third value

 How to assign “third value” to random cells

 Ternary response cannot work with conventional FEs

: Constant cells

: Random cell
: 1

: 0

Type of cell Assigned value

Constant
0 00

1 11

Random 10

Binary response

(Contain 10% erroneous cells)

Multiple-valued response

(No longer erroneous)

Ternary assignment by 

two bits [CHES11]



Biased PUF

 Bias has influence on secure key generation

 p-biased PUF: 

|Pr(Xi = 0) – 0.5| = p

 If bias is high, then 

entropy decreases

 Typical FEs require 

p < 0.082

 Debiasing

 Extract low-biased 

response from 

high-biased one

 Debiased response is

shorter than original

Non-biased (p = 0) high-biased (p = 0.2)

Biased 

response

Debiasing
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response
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Conventional debiasing method

 Classic deterministic randomness extractor 

(CDRE) proposed by von Neumann

 Handle input bit string with a pair of two consecutive bits

 (1, 0) and (0, 1) are assigned to 1 and 0, respectively

 (0, 0) and (1, 1) are discarded

 Debiasing based on CDRE [CHES15]

1 0 1 0 0 1 1 11 0 01 1 0 1 1

Resulting response Y

Debiasing data D

Original response X

＝≠ ＝ ≠ ≠ ＝ ≠ ＝

1 1 0 0

1 0 0 1 1 10 0

Enrollment



Debiasing based on CDRE

 Enrollment

 Generate debiased response Y and debiasing data D

 Reconstruction

 Reconstructs noisy debiased response Y’ based on D

Enrollment

input output

x2i x2i+1 yi di

0  0 discard 0

0  1 0 1

1  0 1 1

1  1 discard 0

Reconstruction

input output

x’2i x’2i+1 di y’i

0  - 1 0

1  - 1 1

- - 0 discard

xi : ith bit of X yi : ith bit of Y

di : ith bit of D - : Don’t care

p0, p1 : Occurrence probability 

of 0 and 1 in X

Zeros and ones appear in Y

with same probability p0 p1
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Proposed debiasing method

 Input： ternary response

 Ternary digit string with 0, 1, and  r (random value)

Output: debiased binary response

 Conventional FEs can be used together with 

proposed debiasing method

Ternary response T

Debiased binary response Y

PUF response X

Ternary/binary-debiasing-E D

Binary to ternary

Enrollment

Ternary/binary-debiasing-R

Noisy ternary response T’

Noisy PUF response X’

D

Binary to ternary

Noisy debiased binary response Y’

Reconstruction



 Handle input with a pair of consecutive digits

 Perform error correction in reconstruction

Proposed debiasing method

Enrollment

input output

t2i t2i+1 yi di

0  0 discard 0

1  1 discard 0

r r discard 0

0  1 0 1

r 1 0 1

0  r 0 1

1  0 1 1

r 0 1 1

1  r 1 1

Reconstruction

input output

t’2i t’2i+1 di y’i

0  - 1 0

1  - 1 1

r r 1 1

r 0 1 1

r 1 1 0

- - 0 discard

p0, p1, pr : 
Occurrence probability of 

constant cell (0 or 1) and 

random cell (r) in X

ti: ith bit of T, yi: ith bit of Y

di: ith bit of D,    - : Don’t care

Both 0s and 1s appear by

probability p0 p1+p0 pr+p1 pr

in resulting response  



 Error patterns of response bits in reconstruction

Error bits in reconstruction
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 Error patterns of response bits in reconstruction
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 Error patterns of response bits in reconstruction

Error bits in reconstruction
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Proposed method is considered as error correction 

using a code {(0, 1), (1, 0)} with erasure symbol r

0



 EConv = np0 p1(1-pr)

 EProposal = n (p0 p1+p0 pr+p1 pr)

 Random cells contribute to entropy in proposed 

method

Expected entropy after debiasing 
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Experimental simulation

 Evaluate resulting bias and response length 

Generate ternary responses by simulation

 Length of ternary response: 1,024

 With different bias and number of random cells 

– Bias range from 0 to 0.5

– Number of random cells from 50 to 500

 Number of responses for each parameter: 1,000



 Both responses on average satisfied the condition

Average bias of resulting response

Condition for secure key generation

with a typical FE: |p’0 - 0.5| < 0.082
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 Responses extracted by proposed method satisfied 

the condition even in worst-case

 Use of ternary response increases entropy of response

Worst-case bias of resulting response
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Resulting bit length for different biases

 High-bias results in short response in both methods

 Proposed method obtained 22% longer bit length 

than conventional method

 Use of ternary response can extract high entropy

Number of random cells is 100



 Proposed method extracted longest bit length when 

the number of random cells was 300-400

 Entropy of ternary response is largest when number

of random cells is one-third of all cells

Resulting bit length for different # of random cells 

Bias of response before debiasing （| p0 - 0.5 |） is 0.1



Experiment with FPGA implementation

 Implement Latch-PUF on FPGA

 Using 3 FPGAs (Xilinx Spartan 6)

 Implemented at 10 different locations

 Response bit length：1,024

 Number of challenges to detect random cells: 256

Xilinx Spartan 6

30 L-PUFs



Biases of resulting responses

 Both methods reduced biases significantly

 Percentage of random cells was ~10% in the experiment



 High bias decreases resulting bit lengths for both 

methods as the same as in simulation

 Proposed method could extract larger bit length

Resulting bit length for original biases

36% longer



FE using proposed debiasing method

 Enrollment

 Reconstruction
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FE using proposed debiasing method

 Enrollment

 Reconstruction

Ternary word T

Code word C
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X
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Debiased response Y

D

Binary to ternary
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Noisy ternary response T’

X’

＋ ECC decoder Key derivation functionW K

D

Binary to ternary



Performance evaluation for FEs

 Evaluation of FEs with simulated PUF responses

 Comparison of authentication failure rate and efficiency

 Simulated response based on  L-PUF implemented 

on FPGA 

 ECC in FE: connected code

 (24,12) Golay code and (8,1) repetition code

Efficiency = debiased bit length / original PUF response length



 Pfail = 0 under experimental conditions

 Thanks to high stability of multiple-valued response

 Proposed method does not require strong ECC in FE

Comparison of debiasing results by FEs

Bias
Random

cell

Conventional method Proposed method

Pfail Efficiency Pfail Efficiency

0.1 0.1 0 0.236 0 0.286

0.2 0 0.237 0 0.312

0.3 0.013 0.243 0 0.328

0.3 0.1 0 0.172 0 0.220

0.2 0.002 0.184 0 0.264

0.3 0.240 0.195 0 0.287

10,000 challenges



 Pfail = 0 under experimental conditions

 Thanks to high stability of multiple-valued response

 Proposed method does not require strong ECC in FE

Our method achieved 21-47% higher efficiency

 Efficiency is high when more random cells appear

Comparison of debiasing results by FEs
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Random
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Conventional method Proposed method

Pfail Efficiency Pfail Efficiency

0.1 0.1 0 0.236 0 0.286
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0.3 0.013 0.243 0 0.328

0.3 0.1 0 0.172 0 0.220

0.2 0.002 0.184 0 0.264

0.3 0.240 0.195 0 0.287
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Concluding remarks

Multiple-valued response extraction can be used 

with key generation based on FE

 Improved stability and longer full-entropy response

– Even in worst-case bias, our method satisfied the 

condition to generate secret information securely

– 36% longer full-entropy than conventional binary 

debiasing in an experiment

 Future works

 ECC design taking advantage of proposed method

 Further evaluation using other types of PUFs


