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@ LS-Designs

© Applying DFA on LS-Designs
@ General principle
@ Depending on the fault model

© Practical implementation of the DFA on SCREAM
@ The TAE mode SCREAM
@ DFA on SCREAM
@ Practical implementation

@ Countermeasures
@ Modes of operation
o Masking
o Internal Redundancy Countermeasure

© Conclusion and perspectives
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= General structure
An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso
in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.
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An LS-Design is an iterative block cipher composed of r rounds, introduced by Grosso
in 2014. It takes as input an n-bit block, uses an n-bit key and n-bit round constants.

¥ The round function
The inner state is represented as an n = w X c-bit array.
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¥ The round function
The inner state is represented as an n = w X c-bit array.
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¥ The round function
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¥ The round function
The inner state is represented as an n = w X c-bit array.
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@ General principle
@ Depending on the fault model
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Applying DFA on LS-Designs

Differential properties of S-box
3 of 15

= Proposition
Let S be an n-bit S-box. Let (a1,b1) and (a2,b2) be two differentials with a1 # a2
such that the system of two equations

S(z®ar) ®dS(z)=b (1)
Sz @ az) ® S(z) = by (2)

has at least two solutions. Then, each of the three equations (1), (2) and
S(zx® a1 ®az) D S(z) =b1 & b 3)

has at least four solutions.
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Let S be an n-bit S-box. Let (a1,b1) and (a2,b2) be two differentials with a1 # a2
such that the system of two equations

S(z®ar) ®dS(z)=b (1)
Sz @ az) ® S(z) = by (2)

has at least two solutions. Then, each of the three equations (1), (2) and
S(zx® a1 ®az) D S(z) =b1 & b 3)

has at least four solutions.

B Mathematical exploited relations
Obtaining information on the key is possible from each w-bit word 1 < i < ¢:

x=L"1(CTeC™ @ K)[i] and y = L~L(CT* & C(") @ K)]i]
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= Proposition
Let S be an n-bit S-box. Let (a1,b1) and (a2,b2) be two differentials with a1 # a2
such that the system of two equations

S(z®ar) ®dS(z)=b (1)
Sz @ az) ® S(z) = by (2)

has at least two solutions. Then, each of the three equations (1), (2) and
S(zx® a1 ®az) D S(z) =b1 & b 3)

has at least four solutions.

B Mathematical exploited relations
Obtaining information on the key is possible from each w-bit word 1 < i < ¢:

z=L"YCTeC™ @ K)[i] and y = L~1(CT* @ C(") @ K)][i]
satisfy
z@y=L Y (CTRCT*)= AY"[i] = ay
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= Proposition

Let S be an n-bit S-box. Let (a1,b1) and (a2,b2) be two differentials with a1 # a2

such that the system of two equations
S(x®ar)®S(z)=b
S(x ®az2) ®S(xz) =bo
has at least two solutions. Then, each of the three equations (1), (2) and
S(zx® a1 ®az) D S(z) =b1 & b
has at least four solutions.

B Mathematical exploited relations

Obtaining information on the key is possible from each w-bit word 1 < i < ¢:

x=L"1(CTeC™ @ K)[i] and y = L~L(CT* & C(") @ K)]i]
satisfy
z@y=L Y (CTRCT*)= AY"[i] = ay
and
S7lz) @S (y) = AX(M[] =297 =p;.

1
)

3)

Benjamin Lac | CEA-Tech/DPACA/LSAS Works presentation at COSADE 2017 | April 14th, 2017



Applying DFA on LS-Designs

Ideal fault model
4 of 15

¥ |deal fault model
— Find b; = AX{") = 29=i1 and by = AXS”) = 29~i2 with 1 < i1 < ip < w
such that (a1,b1) and (a2, b2) are simultaneously satisfied
for a single element for all a1 and as.
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¥ |deal fault model

— Find b; = AX{") = 29=i1 and by = AXS”) = 29~i2 with 1 < i1 < ip < w
such that (a1,b1) and (a2, b2) are simultaneously satisfied
for a single element for all a1 and as.

= Flip the row i1 then the row iy of the state before the
last substitution layer with two successive fault injections
in order to retrieve the complete secret key.
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¥ |deal fault model
— Find b; = AX{") = 29=i1 and by = AXS”) = 29~i2 with 1 < i1 < ip < w
such that (a1,b1) and (a2, b2) are simultaneously satisfied
for a single element for all a1 and as.

= Flip the row i1 then the row iy of the state before the
last substitution layer with two successive fault injections
in order to retrieve the complete secret key.

= Exploitable differential pairs

Cipher I ‘ Pair ’
PRIDE (a1,0x1), (a2,0x8)

Robin (a1,0x01), (a2,0x40)
Fantomas | | (a1,0x01), (a2,0x80)
Scream (a1,0x01), (a2,0x02)
iScream (a1,0x02), (a2,0x80)
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Applying DFA on LS-Designs

Random fault model
5 of 15

= Random fault model
= Target the same by = AXY) =29~ and by = AX;T) = PI=2,
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= Random fault model
= Target the same by = AXY) =29~ and by = AX;T) = PI=2,

= Let Ay (resp. Az) be the average number of remaining candidates for a w-bit
key word obtained from a fault on row i1 (resp. i2).
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= Random fault model
= Target the same by = AXY) =29~ and by = AX;T) = PI=2,

= Let Ay (resp. Az) be the average number of remaining candidates for a w-bit
key word obtained from a fault on row i1 (resp. i2).

— Let m1 (resp. m2) denote the number of obtained faults on row i1 (resp. i2).

Benjamin Lac | CEA-Tech/DPACA/LSAS Works presentation at COSADE 2017 | April 14th, 2017



Applying DFA on LS-Designs

Random fault model
5 of 15

= Random fault model
= Target the same by = AXY) =29~ and by = AX;T) = PI=2,
= Let Ay (resp. Az) be the average number of remaining candidates for a w-bit
key word obtained from a fault on row i1 (resp. i2).
— Let m1 (resp. m2) denote the number of obtained faults on row i1 (resp. i2).
Then, the number N of remaining candidates for the key is:

mi m2 mi m2 ¢

2« Ay Ao
omi+ma iz Z 2it+ma 61 Z 2it+m1 i ?

P=1 =1 i=1 =1

H
| =
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Random fault model
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= Random fault model
= Target the same by = AXY) =29~ and by = AX;T) = PI=2,

= Let Ay (resp. Az) be the average number of remaining candidates for a w-bit
key word obtained from a fault on row i1 (resp. i2).

— Let m1 (resp. m2) denote the number of obtained faults on row i1 (resp. i2).

Then, the number N of remaining candidates for the key is:

c

mq mo (g ULy
2v A Aa 1 1
oo e M- S OB N DBE
i=1 =1 i=1 =1

Indeed, from m faults, an attacker obtains no difference on a w-bit wo_rd with probability
1/2™, she obtains at least one difference with probability Z:il 12 =N OIZe="1))/2"™
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= Random fault model
= Target the same by = AXY) =29~ and by = AX;T) = PI=2,

= Let Ay (resp. Az) be the average number of remaining candidates for a w-bit
key word obtained from a fault on row i1 (resp. i2).

— Let m1 (resp. m2) denote the number of obtained faults on row i1 (resp. i2).

Then, the number N of remaining candidates for the key is:

c

mq mo (g ULy
2v A Aa 1 1
oo e M- S OB N DBE
i=1 =1 i=1 =1

Indeed, from m faults, an attacker obtains no difference on a w-bit wo_rd with probability
1/2™, she obtains at least one difference with probability Z:il 12 =N OIZe="1))/2"™
We then deduce that IV is equal to:

(2w + A1(2™1 — 1) + Ag(2™2 — 1) + (2™ — 1)(2™2 — 1))0

Qmi+m2
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Applying DFA on LS-Designs

Properties that make the attack effective
6 of 15

B The design of the linear layer

= Flip a c-bit row of the state before the substitution layer
activates all S-boxes at its input.
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B The design of the linear layer
= Flip a c-bit row of the state before the substitution layer
activates all S-boxes at its input.

= Use this property on the last substitution layer allows the
attacker to recover information on all w-bit words of K.
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B The design of the linear layer
= Flip a c-bit row of the state before the substitution layer
activates all S-boxes at its input.

= Use this property on the last substitution layer allows the
attacker to recover information on all w-bit words of K.

= The number of remaining candidates is at most ¢, where
¢ is the differential-uniformity of the S-box.
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B The design of the linear layer =

D

= =N
= Flip a c-bit row of the state before the substitution layer
activates all S-boxes at its input.

= Use this property on the last substitution layer allows the
attacker to recover information on all w-bit words of K.

= The number of remaining candidates is at most ¢, where
¢ is the differential-uniformity of the S-box.

¥ The differential properties of the S-box

= The number of inputs which satisfy two valid differentials
simultaneously is usually reduced to a single element.
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e,
Ty <

B The design of the linear layer =
= Flip a c-bit row of the state before the substitution layer v
activates all S-boxes at its input.

= Use this property on the last substitution layer allows the
attacker to recover information on all w-bit words of K.

= The number of remaining candidates is at most ¢, where
¢ is the differential-uniformity of the S-box.

¥ The differential properties of the S-box

= The number of inputs which satisfy two valid differentials
simultaneously is usually reduced to a single element.

= It is therefore sufficient to find two differences 2«—% and
2%~J which verify it and to flip the i-th row then the j-th
row before the last substitution layer.
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Practical implementation of the DFA on SCREAM

© Practical implementation of the DFA on SCREAM
@ The TAE mode SCREAM
@ DFA on SCREAM
@ Practical implementation
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Practical implementation of the DFA on SCREAM

Cga The TAE mode SCREAM

— 7 of 15

= Tweakable Authenticated Encryption (TAE) mode
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= Tweakable Authenticated Encryption (TAE) mode

Tin—2
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Practical implementation of the DFA on SCREAM

Cga The TAE mode SCREAM
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= Tweakable Authenticated Encryption (TAE) mode

Tn—2 Trn—1
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tza Practical implementation of the DFA on SCREAM

The TAE mode SCREAM
7 of 15

= Tweakable Authenticated Encryption (TAE) mode
;
:

B Tweakey scheduling algorithm of Scream

Scream is an iterative block cipher composed of N; steps, each of them made of N,
rounds, introduced by Grosso in 2014. It takes as inputs a 128-bit block, a 128-bit key
K and a 128-bit tweak T = to]|¢1.

On g
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The TAE mode SCREAM
7 of 15

Py

Pm—Q
10-} -0
= -
Cm—Z
Cm—l

B Tweakey scheduling algorithm of Scream

Scream is an iterative block cipher composed of N; steps, each of them made of N,
rounds, introduced by Grosso in 2014. It takes as inputs a 128-bit block, a 128-bit key
K and a 128-bit tweak T" = ¢o||t1. The tweak is used as a “lightweight key schedule”.
The output of the step s is added by an XOR to a subkey equal to:

Ko (to”tl) if s = 31,
K@(to@tlnto) ifs=3i+1,
K@ (t1]|to @ t1) if s =3i+ 2.
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Practical implementation of the DFA on SCREAM

DFA on SCREAM
8 of 15

= DFA on SCREAM
= Target the last two rows to obtain differentials (a1,0x01) (resp. (a2,0x02)) which
allows to obtain A1 & 2.286 (resp. A2 ~ 2.639) candidates on some key bytes.
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DFA on SCREAM
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= DFA on SCREAM
= Target the last two rows to obtain differentials (a1,0x01) (resp. (a2,0x02)) which
allows to obtain A1 & 2.286 (resp. A2 ~ 2.639) candidates on some key bytes.

= The inner state is represented as a 8 x 16 bit array.
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Practical implementation of the DFA on SCREAM

DFA on SCREAM
8 of 15

= DFA on SCREAM
= Target the last two rows to obtain differentials (a1,0x01) (resp. (a2,0x02)) which
allows to obtain A1 & 2.286 (resp. A2 ~ 2.639) candidates on some key bytes.
= The inner state is represented as a 8 x 16 bit array.

Therefore, the average number of remaining candidates for the key from m1 (resp. m2)
random faults on the last (resp. penultimate) row is approximately:

(252.075 1.286  1.639 )16
+1

omi+ma2 oma2 om1

Benjamin Lac | CEA-Tech/DPACA/LSAS Works presentation at COSADE 2017 | April 14th, 2017



Practical implementation of the DFA on SCREAM
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= DFA on SCREAM
= Target the last two rows to obtain differentials (a1,0x01) (resp. (a2,0x02)) which
allows to obtain A1 & 2.286 (resp. A2 ~ 2.639) candidates on some key bytes.
= The inner state is represented as a 8 x 16 bit array.

Therefore, the average number of remaining candidates for the key from m1 (resp. m2)
random faults on the last (resp. penultimate) row is approximately:

252 075 1.286  1.639 13
+ +1

2m1 +ma oma2 om1

290
270
g3 950
930
910
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= DFA on SCREAM
= Target the last two rows to obtain differentials (a1,0x01) (resp. (a2,0x02)) which
allows to obtain A1 & 2.286 (resp. A2 ~ 2.639) candidates on some key bytes.
= The inner state is represented as a 8 x 16 bit array.

Therefore, the average number of remaining candidates for the key from m1 (resp. m2)
random faults on the last (resp. penultimate) row is approximately:
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Practical implementation of the DFA on SCREAM

Practical implementation
9 of 15

B The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires
no decapsulation of the chip and allows to precisely target a given time.

DIGILENT
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Practical implementation
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B The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires
no decapsulation of the chip and allows to precisely target a given time.

DIGILENT

E The SCREAM implementation used
= We have implemented and run the 128-bit reference VHDL code of SCREAM.
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B The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires
no decapsulation of the chip and allows to precisely target a given time.

E The SCREAM implementation used
= We have implemented and run the 128-bit reference VHDL code of SCREAM.

= The FPGA die was composed of components CRYPTO, UART and FSM.
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Cea Practical implementation

9 of 15

B The faults injection device

We used electromagnetic pulses to disrupt SCREAM execution. This approach requires
no decapsulation of the chip and allows to precisely target a given time.

E The SCREAM implementation used
= We have implemented and run the 128-bit reference VHDL code of SCREAM.

= The FPGA die was composed of components CRYPTO, UART and FSM.

= The input parameters were a 88-bit nonce, 2 ass. data blocks and 3 data blocks.
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Practical implementation of the DFA on SCREAM

Practical implementation
10 of 15

= Electromagnetic radiations analysis of SCREAM

EM

. . . . . . . . .
o 200 400 600 800 1000 1200 1400 1600 1800
Time (ns)
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Cza Practical implementation

10 of 15

= Electromagnetic radiations analysis of SCREAM

UART SCREAM execution UART
=
&
wputs | _ass aita1 | s a2 Data 1 omaz | owea | ouens
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o 200 400 600 800 1000 1200 1400 1600 1800
Time (ns)
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= Electromagnetic radiations analysis of SCREAM

UART SCREAM execution UART
M li
opus | _ns awa 1| nws awnz | o D2 D Quus
) , , f . . \ . )
0 200 400 600 800 1000 1200 1400 00 1800
Time (ns)

Scream execution

Round 102 (3 ]a[sNe[7]e]ofroln]sa|rsfa[1s|16]1r]16]10]20] 2] 22[ 23]

0 40 80 120 160 200 240
Time (ns)
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= Electromagnetic radiations analysis of SCREAM

UART SCREAM execution UART
n‘\‘ M
z [Nm“ N ﬂ \“‘
i i i i n ’ RN )
) 200 400 600 800 1000 1200 1400 00 1800
Time (ns)

Scream execution

ols112] 3] 1a[ 15| 16] 17 18] 19 20] 2] 22[ 23] ¢

120 160 200 240
Time (ns)

19

= Cartography of the obtained faults on the full chip
= The pulses were injected on 100 spatial positions
distributed on a 10x10 grid.

¥ (mm)

X (mm)

Number of faults
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= Electromagnetic radiations analysis of SCREAM

UART SCREAM execution UART
n‘\‘ M
s | hss ama1 | s a2 Daa 1 Da Quous
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= Cartography of the obtained faults on the full chip
= The pulses were injected on 100 spatial positions
distributed on a 10x10 grid.

= On each, we tested 11 different temporal positions, §
4 different voltages and we injected 2 pulses.
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= Cartography of the obtained faults on the full chip
= The pulses were injected on 100 spatial positions
distributed on a 10x10 grid.

= On each, we tested 11 different temporal positions, §
4 different voltages and we injected 2 pulses.

= On the 8800 injections, we obtained 465 faults
of which at most 88 to one spatial position. q

X (mm)
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Cza Practical implementation
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= All obtained faults
— A total of 69250 pulses were injected on the sensitive area of the chip. We
obtained 2482 faults, among which 937 were different.
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— A total of 69250 pulses were injected on the sensitive area of the chip. We
obtained 2482 faults, among which 937 were different.

= For each fault, we verified if each byte could have been obtained by the same
difference equal to 27 with 0 < j < 7 in input of the last substitution layer.
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— A total of 69250 pulses were injected on the sensitive area of the chip. We
obtained 2482 faults, among which 937 were different.

= For each fault, we verified if each byte could have been obtained by the same
difference equal to 27 with 0 < j < 7 in input of the last substitution layer.

= A total of 36 different faults complied with this property.
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= All obtained faults

— A total of 69250 pulses were injected on the sensitive area of the chip. We
obtained 2482 faults, among which 937 were different.

= For each fault, we verified if each byte could have been obtained by the same
difference equal to 27 with 0 < j < 7 in input of the last substitution layer.

= A total of 36 different faults complied with this property.

. Aln |
 Gained knowledge 0x01 | [ 0:04] [ 0x08 ] | =l (cToK @ T[] @ c(23)[4)
) 1 0xb8 0 0xb9 0x03
i 2 0x33 0 0x88 0x0e
[ || i=3 0x47 | | Ox4b 0 Ox2e
i 4 Oxca 0x54 0x3a Oxef
i 5 0x19 (1] ? 0x2b, 0x32, 0x4f, 0x56, 0x65 or 0x7c
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~ i =17|| Ox2a 0 0 0xd1 or 0xfb
[ || ¢ =8]|0xd5 0 Oxla Oxcb
5 i 9 0xd9 0 0 0x02 or Oxdb
> || i=10]|0xsd|| 0 || o0xs8 0x3f
[ [ i=11||o|| 0 || 0xf0 0x48
[ || %=12]]| Oxcc 0 Oxbc 0x59
i = 13| | Ox2a 0 Oxla Oxd1
[ || %=14]|| ox54 0 Oxee Oxed
[ || i=15]]| 0x8a 0 0x46 0x9e
L |li=16]|ox2|| 0 ||o0xo 0x97

We eventually obtained 6144 ~ 212-58 candidates for L~ 1(CTQK @ T) & C(23),
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Countermeasures

@ Countermeasures
@ Modes of operation
o Masking
o Internal Redundancy Countermeasure
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Countermeasures

Modes of operation
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= Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It
turns out that some well-known modes - standardized and already used in practice -
thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

Benjamin Lac | CEA-Tech/DPACA/LSAS Works presentation at COSADE 2017 | April 14th, 2017



Countermeasures

Modes of operation
12 of 15

= Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It
turns out that some well-known modes - standardized and already used in practice -
thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

—. ..
[ Plaintext }—V%— [ Plaintext }—V%l [ Plaintext }—V?

[ Ciphertext ] [ Ciphertext ] [ Ciphertext ]

OFB mode encryption
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In order to encrypt data, a block cipher is always used with a mode of operation. It
turns out that some well-known modes - standardized and already used in practice -
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In order to encrypt data, a block cipher is always used with a mode of operation. It
turns out that some well-known modes - standardized and already used in practice -
thwart our DFA. It is the case for the modes which use an nonce to encrypt data.
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= Cipher not applied to data

In order to encrypt data, a block cipher is always used with a mode of operation. It
turns out that some well-known modes - standardized and already used in practice -
thwart our DFA. It is the case for the modes which use an nonce to encrypt data.

[ Plaintext }—V? [ Plaintext }—V? Plaintext }—V

[ Ciphertext ] [ Ciphertext ] [ Ciphertext ]

CTR mode encryption
& Cipher applied to data

[ Plaintext ] [ Plaintext ) [ Plaintext )

s .
h | @& &

[ Ciphertext ] [ Ciphertext ] [ Ciphertext ]

CBC mode encryption
In this case, the IV must be unpredictable by the attacker in advance, otherwise:
V(]Vl,IVQ), 3(P1,P2) such that P @ I[V] = Po @ [ V5.
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Countermeasures

Masking
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= Description
Add a random value RV to the state SM in the middle of the encryption £ .
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= Description
Add a random value RV to the state SM in the middle of the encryption £ .

Ciphertext

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext
C= gg)(gg)(}—‘ﬁ) @ RV1) and a faulty one C* = EE)(SQ)(PQ) @ RV3) such that:

QP @ RVi = £ () ® RV%.

From the birthday paradox, this requires 27/2 fault injections where n is the block size.
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Masking
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= Description
Add a random value RV to the state SM in the middle of the encryption £ .

Ciphertext

Then, to mount a DFA on the encryption, an attacker must obtain a correct ciphertext
C= gg)(gg)(}—‘ﬁ) @ RV1) and a faulty one C* = EE)(SQ)(PQ) @ RV3) such that:

QP @ RVi = £ () ® RV%.
From the birthday paradox, this requires 27/2 fault injections where n is the block size.

= Cost

The cost depends on the choice of the random mask generation. A simple LFSR
implemented in hardware has a low cost with respect to loT constraints.
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Countermeasures

Internal Redundancy Countermeasure
14 of 15

= Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions
systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference
blocks to thwart fault attacks, especially skip instruction for which it is very effective.
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= Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions
systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference
blocks to thwart fault attacks, especially skip instruction for which it is very effective.

= Cost

IRC simply uses bitwise operators on 32-bit and use SIMD instructions - or masks
depending on the targeted device - to replace nonlinear operations.
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= Description

IRC consists in using efficient 8-bit implementations but from 32-bit instructions
systematically operating as a whole on the 4 bytes of a 32-bit word. It uses reference
blocks to thwart fault attacks, especially skip instruction for which it is very effective.

= Cost

IRC simply uses bitwise operators on 32-bit and use SIMD instructions - or masks
depending on the targeted device - to replace nonlinear operations.

Therefore, we obtain performances close to those on an 8-bit architecture while having
a structure that intrinsically protects against DFA.
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= Conclusion
= General method for Differential Fault Analysis on any block cipher based on LS-designs
and other families of SPN with similar structures from only 2 faults in the best cases.
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= Conclusion

= General method for Differential Fault Analysis on any block cipher based on LS-designs
and other families of SPN with similar structures from only 2 faults in the best cases.

= Successfully perform such an attack against a hardware implementation of SCREAM,
using the TLS-Design Scream with a fixed tweak.

= Faults were injected using EM pulses, which constitutes a low-cost means of injection.

= Resistance against DFA is important for
an LS-Design, which will be dedicated to
low-end devices thanks to its lightness.

= Some countermeasures which leave the cipher
still efficient for loT devices, especially a new
kind of countermeasure: the so-called

Internal Redundancy Countermeasure.

Perspectives

= Apply IRC on other block ciphers and also
propose a generic method to deploy it on
stream ciphers: will be studied in future work.
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