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Abstract. We present Zorro, a taped-out ASIC hosting three distinct
authenticated encryption architectures based on the SpongeWrap con-
struction. All designs target resource-constrained environments such as
smart cards or embedded devices and therefore, have been protected
against DPA attacks while keeping low-area as the most important design
goal in mind. Each of the three architectures contains masking and hid-
ing countermeasures. They solely di�er with regard to the implemented
secret-sharing scheme. While the �rst design is based on a 3-share thresh-
old implementation (TI), which does not ful�ll the uniformity property,
the other two make use of the 3-share approach with re-masking and
the 4-share approach as proposed by Bilgin et al. Our smallest, provable
�rst-order DPA secure Keccak implementation requires only 14.5 kGE
(which is less than half of the size of related work) and contains both
front-end and back-end design overheads. Moreover, we present �rst DPA
results of the Zorro ASIC by comparing hiding and masking counter-
measures. We were able to recover the cipherkey from a masking-secured
TI implementation based on three shares with about 70 000 power traces.

Keywords: Duplex construction, SpongeWrap, threshold implemen-
tation, side-channel attacks, DPA, low-area hardware, ASIC.

1 Introduction

Con�dentiality and authenticity of data are among the most important cryp-
tographic services required to transfer data securely over public communication
channels. The former is commonly achieved by symmetric encryption algorithms
while the latter is often obtained by message authentication codes (MACs).
These cryptographic primitives have been treated independently in the past,

? This work was done while the author was with Graz University of Technology.



which led to ine�cient solutions and severe security problems [9,11]. For this
reason, researchers have started to develop new hybrid algorithms that o�er the
desired service of authenticated encryption (AE), for instance, as part of the
on-going CAESAR competition [1].

The SpongeWrap construction [3] uses the underlying permutation of Kec-
cak�the winner of the NIST SHA-3 competition [6] in 2012�in order to real-
ize an AE system. Implementations using Keccak-f in a keyed mode4 such as
SpongeWrap, necessarily require protection against implementation attacks
such as Di�erential Power Analysis (DPA) [15]. Since especially smart cards and
embedded systems are usually accessible by a broader mass of people, counter-
measures like hiding ormasking techniques are mandatory for such devices nowa-
days. The authors of Keccak proposed to implement a secret sharing technique
to protect keyed Keccak instances [2,7]. This technique is based on the idea to
divide key-dependent intermediate values into unique parts (so-called shares)
and to re-combine them after the processing. In order to achieve �rst-order
DPA resistance, this sharing needs to ful�ll three properties: correctness, non-
completeness, and uniformity [17]. Interestingly, Bilgin et al. [8] reported that the
implementation in [2,7] does not ful�ll the uniformity property and is therefore
not provable secure against �rst-order DPA attacks. As a countermeasure, they
proposed to inject fresh random bits in a 3-share implementation or to add an
additional share (4-share version) that avoids the need of fresh randomness.

This work presents �rst results of an actually �taped-out� application-speci�c
integrated circuit (ASIC), called Zorro (our chip is not to confuse with the
block-cipher of Gérard et al. [12] proposed at CHES 2013). Zorro hosts three
distinct hardware architectures for SpongeWrap-based authenticated encryp-
tion, secured against DPA. The chip is intended to be used as a fully �exible
evaluation platform for determining the e�ectiveness of hiding and masking coun-
termeasures in a real ASIC. Therefore, the three architectures solely di�er with
regard to the realized masking technique. While the �rst design makes use of
the 3-share approach proposed by Bertoni et al. [2,7], the latter two utilize the
3-share implementation with re-masking and the 4-share approach presented by
Bilgin et al. [8], which both ful�ll the uniformity property. Moreover, each of the
three architectures contains hiding countermeasures, which can be switched on
and o� at will. The main �elds of application for Zorro are resource-limited
environments such as smart cards, embedded systems, or RFID-based devices,
which is why low-area was our most important design goal. Zorro was fabri-
cated in a 180 nm CMOS process technology by UMC and the smallest of the
three architectures requires only 14.5 kGE. This represents the smallest reported
masked Keccak ASIC implementation to date. Beside the un-keyed Keccak
implementations available in literature [4,14,20], the smallest reported masking-
secured designs so far require more than 30 kGE [2,7,8].

Moreover, we are the �rst to present DPA results targeting Keccak im-
plementations on a fabricated ASIC chip. We provide �rst DPA results of the

4 This mode involves a secret key that needs to be protected against implementation
attacks. It is used in, e.g., stream encryption or authenticated encryption modes.
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unprotected, the hiding-secured, and the three share threshold implementation
(TI). A higher-order DPA attack against the masked implementation succeeds
with about 70 000 measurements. In order to reach a comparable security level
with the hiding countermeasure, an impractical number of 240 dummy rounds
needs to be inserted, what equals ten times the number of rounds (24) for one
Keccak-f permutation. Future work will consist in a detailed comparison of
the three threshold implementations on the ASIC, requiring a huge amount of
measurements which are not available yet.

The remainder of this paper is structured as follows. In Section 2, we give
a brief introduction to the authenticated encryption mode SpongeWrap. Sec-
tion 3 presents the hardware architecture of Zorro. Implementation and power-
analysis results are given in Section 4 and �nally a discussion about the results
and future work is provided in Section 5.

2 The SpongeWrap Construction

The core element of SpongeWrap is the Keccak-f permutation [6]. The most
prominent application of Keccak-f is its use in a sponge construction [5] to
build the hash algorithm Keccak, which has recently been presented as a new
draft for the upcoming SHA-3 standard by NIST [19]. However, Keccak-f can
also be used to form several other cryptographic primitives [3], including the AE
mode SpongeWrap. In the following, a brief introduction to the SpongeWrap

construction and theKeccak-f permutation is given. For an in-depth discussion
about the two primitives, we refer the reader to [3] and [6].

The SpongeWrap construction. Fig. 1 illustrates the SpongeWrapmode,
which uses a duplex construction [3] to create an AE scheme. It can be subdivided
into four phases: an initialization phase, an associated-data processing phase, an
encryption phase, and a tag-generation phase. During the initialization, the state
is cleared and loaded with the cipherkey K by a call to the permutation f . After
that, the SpongeWrap object is able to receive data for wrapping associated
data blocks Ai (authenticated only) and plaintext blocksMj (authenticated and
encrypted) to retrieve the ciphertext blocks Cj and the corresponding authen-
tication tag T . The respective decryption process is known as unwrapping and



basically swaps plaintext and ciphertext blocks and compares the received au-
thentication tag with the recomputed one. If the two tags do not match, an error
will be dumped, but no plaintext will be provided.

The Keccak-f permutation. Keccak-f operates on a state with a �xed
size of b bits. This state consists of two parts: r (bitrate) and c (capacity),
where r speci�es the number of input bits, which are processed in one iteration
and therefore relates to the speed of the computation. The last c bits of the
state determine the attainable security level of the construction, i.e., c = b− r.
The authors of Keccak de�ned Keccak-f for the following seven state sizes:
b = 25× w, where w = 2` and ` ranges from 0 to 6. The state is organized as a
5×5×w matrix with three dimension coordinates (x,y,z). We call a set of w bits
with given (x,y) coordinates a lane, a set of 5 bits with given (y,z) coordinates
a row, 5 bits with given (x,z) coordinates a column, and the 5× 5 matrix for a
given (z) coordinate a slice (see Fig. 2). The Keccak-f function further consists
of 12 + 2` rounds that are made up of �ve steps:

θ : Used to integrate di�usion by a linear mixing layer (the parity of two nearby
columns is added to each column).

ρ : Inter-slice dispersion (all lanes are rotated by a de�ned o�set).
π : Breaking horizontal/vertical alignment (the 25 lanes are transposed in a

�xed pattern).
χ : The non-linearity part of Keccak-f (the 5 bits of each row are combined

using AND gates and inverters and the shifted result is added to the row).
ι : A w-bit round constant is added (XORed) to a single lane.

3 Hardware Architecture of Zorro

We intend to use Zorro as an evaluation platform for investigating the qual-
ity of DPA countermeasures for an AE system based on the Keccak-f [1600]
permutation. Our main goal was to build an ASIC, providing di�erent types of
masking and hiding techniques. As pointed out by Bilgin et al. [8], a �rst-order
DPA-secure Keccak design, which is based on a three-share threshold imple-
mentation (without re-masking), does not ful�ll the uniformity property [17,18]
and thus, is not provable secure against �rst-order DPA attacks. Hence, we de-
cided to place three distinct architectures on Zorro, which only di�er with
regard to the implemented masking scheme. The �rst design is based on a three-
share approach as proposed by Bertoni et al. [7]. The second and third archi-
tectures make use of the threshold implementation improvements presented by
Bilgin et al. [8], namely a three-share design using re-masking and a four-share
architecture. Fig. 3 shows a block diagram of the top-level design entity, in-
cluding the three distinct architectures named 3-Share, 3-Share*, and 4-Share.

In order to assure that meaningful power measurements can be taken from
each distinct architecture separately, the Clock Enable entity contains clock gat-
ing cells, which enable the clock only for the actually selected entity. Moreover,
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Fig. 3. Top-level architecture of Zorro.
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the Input Controller forwards the input signals solely to the currently activated
entity, thereby avoiding any logical changes in combinational paths within the de-
activated architectures. With this setup, we are able to obtain meaningful power
measurements of each design without signi�cant noise from the deactivated units
with regard to their dynamic power consumption. The Output Controller is re-
sponsible for forwarding the output signals of the respective unit once an input
data block has been processed. Using a couple of debug outputs, Zorro provides
additional information about currently ongoing internal processes. Data to and
from the chip can be transmitted via an eight bit data bus, controlled by a four
way handshaking protocol. Each of the three architectures by itself can either
operate in encryption or decryption and o�ers four di�erent modes of operation:

Normal Mode: The normal mode represents the default mode in which no
DPA countermeasures are activated. Hence, only one third (for the three-
share based architectures) respectively one fourth (for the four-share based
design) of the state-storing RAMs is actually used. Measurements based on
this mode serve as a reference for the protected alternatives.

Hiding Mode: Running in this mode, Zorro uses two hiding countermeasures
in order to circumvent DPA attacks. First, the user can choose how many
dummy operations should be executed during processing a single input block.
Using a control signal, up to 15 dummy operations can be initiated, each of
them representing a full round of the Keccak-f [1600] permutation. Second,
all three architectures can shu�e their computations by varying between
eight di�erent read/write addresses when accessing the RAM.

Masked Mode: When operating Zorro in this mode, en-/decryption is per-
formed using masking countermeasures in order to prevent DPA attacks.

Secure Masked Mode: In this mode, both hiding and masking countermea-
sures are activated and hence, this represents the most secure way on how
to operate Zorro with regard to its DPA security.

3.1 3-Share, 3-Share*, and 4-Share Architectures

Since the 3-Share, 3-Share*, and 4-Share hardware architectures di�er only very
slightly, we will further on solely discuss the 3-Share version and point out the
di�erences to the other two architectures if necessary.



We aimed to design a low-area, DPA-secure authenticated encryption sys-
tem based on Keccak. Because of these goals, the area density of the memory
required to store the Keccak state is of utmost importance. Moreover, the im-
plemented secret sharing countermeasure works on the algorithmic level, and
thus the required memory for the state increases with each share. Therefore,
we favored a random-access memory (RAM) macro cell over their standard cell
counterparts to store the state, which o�ers a better bit-per-area density. We
store both the round constants of the ι function and the shift o�sets of the ρ
function in look-up tables (LUTs). Fig. 4 illustrates the uppermost hierarchy
level of the 3-Share entity, including the state RAM, the LUTs, and the data-
path entity, which gets controlled by a �nite-state machine (FSM). Moreover,
Fig. 4 shows the linear-feedback shift register (LFSR), which is constructed by
the primitive polynomial x32 + x7 + x3 + x2 + 1. The initialization of the LFSR
is done with an external seed. Its output is used on the one hand for determin-
ing whether to perform a dummy operation or not, and on the other hand for
generating the random bits required for the re-masking in the 3-Share* architec-
ture. Overall, 42 random bits are required per input block (39 for the dummy
operation conditions and three for the shu�ing of the RAM addresses).

The 3-Share architecture contains a 608 × 8 RAM (cf. Fig. 4) for storing
the state and the shares. Basically, a secret sharing scheme for Keccak based
on three shares would require only 4 800 bits (three times the state size). We
use the additional eight bytes of the RAM as inputs for the dummy operations
during the hiding mode and therefore, keep these memory locations uninitialized.
Thereby, none of the dummy operations computes on the actual payload of the
chip and hence, no correlated power �gures should be observed.

For the initial masking of the 3-Share (4-Share) entity, the chip receives 3 200
(4 800) random bits to initialize two (three) shares followed by the plaintext.
The last share equals the XOR-sum of the already initialized shares with the
plaintext. The implementation of the Keccak-f [1600] permutation is based on
a combined lane and slice processing, similar to that proposed by Pessl and
Hutter [20]. Fig. 5 shows the architecture of the Datapath unit of the 3-Share
entity. We use the SubState register to bu�er lanes and slices currently being
processed.

RAM allocation. As proposed by Bertoni et al. [4], storing the bits of lanes and
slices in an interleaved form allows e�cient processing of the data when choosing
a small datapath width, meanwhile keeping the size of the required bu�er register
at a minimum. We also make use of this technique and store four bits of two slices
in each RAM word (i.e., two bits of four lanes). Since we need four lanes at a
time, this results in a bu�er register of 256 bits. Unfortunately, the state consists
of 25 lanes and thus, not all lanes can be stored in this interleaved form. We
decided to store the �rst lane in a linear way, as this lane is not in�uenced by the
ρ operation and hence, can be skipped for this function. Although, based on this
memory allocation we waste a negligible amount of clock cycles when loading
data of the �rst lane, we can keep the size of the SubState register comparatively
small. In order to avoid switching back and forth between slice-based and lane-
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Fig. 5. Datapath of the 3-Share entity (controlling signals omitted).

based operations as much as possible, we make use of the same rescheduling
approach proposed in [20], where they distinguish between the following three
di�erent types of �rounds�:

R1 = θ × ρ R2...24 = π × χ× ι× θ × ρ R25 = π × χ× ι (1)

Round operations. When Zorro operates in normal mode, the four slice-
based round functions of Keccak-f (θ, π, χ, and ι) are exclusively calculated in
the SliceUnitLin within a single clock cycle for a whole slice. The applied round
schedule requires to calculate the result of θ, π × χ × ι × θ, and π × χ × ι. As
illustrated on the bottom-right of Fig. 5, all three operations can be accomplished
within the SliceUnitLin with the use of bypass multiplexers. Calculations of the
linear round functions of the Keccak-f permutation are equal for both the
normal mode and the masking-secured modes. Here, each share can be computed
in sequential order (e.g., in R1 the theta step is performed three (four) times
sequentially in order to process the three (four) shares). Due to the fact that the
non-linear χ function requires inputs from more than one share, the processing
of this function slightly di�ers. For the hardware implementation of the 3-Share
architecture, we follow the approach presented by Bertoni et al. [7] and compute
the result for two input slices in a single cycle within the SliceUnitUnlin entity.
For the lane-based operation (ρ), we aimed at calculating its output byte-by-
byte. This allows us to combine it with the RAM write operation. Thanks to the
chosen RAM allocation, multiples of two-bit-wide shift operations of lanes can
easily be accomplished with the addressing of the memory. The special storage
structure provides information about four lanes per RAM word (byte) and the
SubState register can hold up to four lanes simultaneously. Unfortunately, each
lane has a di�erent shift o�set. Hence, di�erent bit couples of the bu�ered lanes
must be taken to compensate the di�erences between the o�sets. The di�erent
compensation o�sets can be precalculated and are stored in the LUTS entity
(see Fig. 4) for each lane quadruple. With these precalculated values, multiples
of two-bit-wide shift operations, and the o�set between the di�erent lanes can
be compensated. The leftover is a possible shift by one bit. Therefore, 4 one-bit-
registers with surrounding multiplexers are used. If a lane is shifted by one bit,
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Table 1. Area breakdown of the Zorro
ASIC (synthesis results at 5 ns).

Component Area [GE] Area [%]

3-Share 13'370 30.5
Datapath & FSM 7'300 16.7
RAM 4'680 10.7
LFSR 300 0.7
SliceUnitLin 480 1.1
Others 610 1.3

3-Share* 13'940 31.8
4-Share 16'190 37.0
I/O Interface 320 0.7

Zorro Total 43'820 100.0

the high bit of the chosen bit couple is stored in the one bit register. The low bit
is shifted one bit to the left and the old content of the one bit register is used
as the new low bit. This is done for each bit couple of the bu�ered lanes. The
result is stored back to the RAM in interleaved form. The responsible unit for
the lane-based operation is called LaneUnit (cf. Fig. 5).

4 Results

The results of our work are twofold. First, we present our implementation results
of Zorro and provide actual ASIC performance numbers of the 3-Share, 3-
Share*, and 4-Share design. Second, we present �rst practical results of DPA
investigations on our AE system using power traces obtained from the real chip.

4.1 Hardware Figures of Zorro

We used VHDL in order to code the RTL model of Zorro and Mentor Graphics'
ModelSim version 10.2a to verify its functional correctness. Synthesis results were
obtained from Synopsys' Design Compiler version 2012.06 for a mature 180 nm
CMOS technology by UMC. The designs were synthesized using a standard
cell library by Faraday Technologies under typical case conditions and backend
design steps were accomplished using SoC Encounter from Cadence. Area results
will be given in terms of gate equivalents (GEs), for which one GE equals the size
of a two-input NAND gate of the utilized standard cell library (= 9.3744µm2).

In order to provide a fair comparison between the results of Zorro and re-
lated work as well as meaningful numbers for an actual chip to be taped out,
we present two di�erent area numbers. On the one hand, we provide synthesis
results without considering any Design for Testability (DFT) techniques.5 On

5 Note that such numbers can vary signi�cantly compared to the actual area �gures
of a �nalized chip ready for tapeout, depending on the implemented design.



Table 2. Comparison of Zorro with related ASIC designs (synthesis results).

Source Techn. Area fmax Perf.†

[nm] [GE] [MHz] [Cycles]

Designs w/o DPA Countermeasures

Pessl and Hutter [20]‡ 130 5'522 61 22'570

Bilgin et al. [8]§ 180 10'800 555 1'600

Zorro in Normal Mode‡ 180 13'370 200 21'888
3-Share-Secured Designs w/o Re-Masking

Bertoni et al. [7]§ 130 95'000 200 72

Zorro 3-Share Architecture‡ 180 13'370 200 113'184
3-Share-Secured Designs w/ Re-Masking

Bilgin et al. [8]§ 180 33'100 553 1'625

Zorro 3-Share* Architecture‡ 180 13'940 200 113'184
4-Share-Secured Designs

Bilgin et al. [8]§ 180 43'100 572 1'600

Zorro 4-Share Architecture ‡ 180 16'190 200 149'640

†
Keccak-f permutation ‡ Block size of 1088 bits § Block size of 1024 bits

the other hand, we include the area numbers after all backend design steps have
been successfully accomplished and therefore the designs include DFT circuitries
for RAM tests as well as scan �ip-�ops to enable automated test pattern gener-
ation (ATPG). Fig. 6 provides an area/time (AT) plot of the synthesis results
of the three di�erent architectures. Based on the isolines, indicating a constant
AT product, it can be observed that for a clock period below 4 ns, the resulting
area of each architecture increases signi�cantly. Moreover, we decided to spend
some room for the upcoming backend run and therefore, chose a maximum fre-
quency of 200MHz for Zorro. The critical path of the design runs through the
SliceUnitLin entity, highlighted using a dashed line in Fig. 5. From Fig. 6 it can
be seen that the area di�erences between the three architectures remains quite
constant. This was expected since a major part of the overall area is occupied by
the RAM. Other di�erences between the three designs with regard to their logic
components are almost negligible. Table 1 lists an area breakdown of the Zorro
ASIC after synthesis for 5 ns. It shows that our 3-Share, 3-Share*, and 4-Share
architectures require 13.4 kGE, 13.9 kGE, and 16.2 kGE, respectively. Table 2
lists a comparison between Zorro and related Keccak-based ASIC designs in
the �eld of low-area and DPA-security.

For the actual tapeout-version of Zorro, we added a couple of DFT cir-
cuitries in order to provide suitable testing possibilities. This, the insertion of
the required bu�ers, and the fact that after the backend design a realistic wire-
load model was available, lead to an increase in area to 14 kGE, 14.5 kGE, and
17 kGE for the 3-Share, 3-Share*, and 4-Share architectures, respectively. Fig. 7
shows the �nal layout of Zorro as well as a photo of the chip. Table 3 provides
a datasheet for some of Zorro's �nal speci�cations.



Fig. 7. Chip layout and photo of Zorro.

Table 3. Datasheet of Zorro.

Property

Technology (UMC) 0.180 µm
Supply Volt. (Core/Pad) 1.8V/3.3V
Max. Frequency (fmax) 200MHz
Required Area 46.0 kGE
Est. Power Cons. @ fmax

3-Share 17.3mW

3-Share* 19.7mW
4-Share 20.8mW

Crypt. Perf. (Normal/Masked)1

3-Share 21'888/113'184

3-Share* 21'888/113'184
4-Share 21'888/149'640

1Requ. cycles for one Keccak-f perm.

4.2 Power-Analysis Results

In order to validate our design regarding power-analysis resistance, we performed
power measurements and applied a standard Correlation Power Analysis (CPA)
based on the Pearson correlation coe�cient [10] on the measured power traces
as a �rst step. Furthermore, higher-order CPA attacks were performed targeting
the 3-Share and 3-Share* implementations. For the rest of this section, ρc indi-
cates the correlation coe�cient of the correct key guess. Another procedure to
rate the power-analysis resistance of an implementation is the method presented
in [13] based on the statistical t-test. The advantage of the t-test is that no
leakage model has to be de�ned. We have observed Hamming-distance leakage
of intermediate values during simulation runs, so we decided to perform CPA
attacks as a �rst step. For future work we will also investigate the t-test method-
ology and compare the outcome with the results presented in this work. Due to
the time-consuming measurement process and the huge number of required mea-
surements, we did not investigate the 4-Share implementation so far.

We used a Picoscope 6404c oscilloscope to capture the power traces from the
Zorro ASIC. The voltage drop across a 1Ω resistor in the core supply line was
measured by applying a LeCroyAP033 di�erential probe. This setup allows to
minimize the noise created by, for instance, I/O activity of the chip because the
chip has a separate supply line for the I/O part. The traces were recorded with a
sampling rate of 1GS/s and the clock frequency of the ASIC was set to 10MHz.

The �rst power trace. The left plot in Fig. 8 shows a measured power trace of
an entire Keccak-f permutation of Zorro running in normal mode. It shows
all 24 rounds (including one additional round at the end where ρ is skipped)
separated by a dotted vertical line. The right plot in Fig. 8 shows a zoom into
the �rst round. We separated the slice and lane processing phases with a dashed
vertical line as well as the eight slice-processing iterations (Zorro processes the
64 slices in eight blocks) by dotted vertical lines. The same was done for the six
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Fig. 8. Power trace of an entire Keccak-f permutation while Zorro is running in
normal mode (left plot). Zoom into the �rst round, computing θ and ρ (right plot).

lane-processing iterations (Zorro processes all 24 lanes in blocks of four). The
time interval where the θ step of the �rst round takes place is of special interest
because the power-analysis attacks presented in the following target the θ step.
Only the �rst θ step was recorded for the power analysis attacks in order to keep
the amount of data small.

Performing CPA. CPA attacks presented in this work focus on the �rst round
of Keccak-f . In particular, we targeted a storage operation of the 256-bit Sub-
State register that stores key-dependent intermediate values during the θ step.
The decision to target the θ transformation and not the non-linear χ transforma-
tion was motivated by the modi�ed round schedule. In the �rst round, θ is the
only slice-based transformation leading to a simple power model. We target a
(unknown but constant) 256-bit key that gets concatenated with the (known and
random) associated data. Thus, each targeted slice operation reveals information
about four key bits. Since θ processes two slices in parallel, we can e�ciently
target 8 key bits by evaluating 256 key hypotheses. θ is a linear function, so not
only the correct key will result in a high correlation, but shifted key variants will
correlate too. Therefore, this attack does not only reveal the correct key but it
will also reveal a small set of other possible key candidates (in our experiment
we will get up to eight out of 256 possible key candidates). Due to the fact that
we can attack all 64 slices and four bits of the key of two subsequent slice pairs
must be similar, only eight key candidates with a length of 256 bits remain for
a brute-force attack, what is within computational bounds (e.g., when attacking
the slice pair (1,2) followed by the slice pair (2,3), only key candidates where
the key bits of slice two are similar need to be considered). First experiments
showed that Zorro leaks the information according to the Hamming distance
power model [16]. As a reference, preliminary attacks target Zorro running in
normal mode (NM, no countermeasures enabled). After the initial attacks, we
have activated the DPA countermeasures one after the other in order to evaluate
their impact on the power-analysis attacks. We �rst evaluate the hiding mode
(HM) followed by the masked mode (MM).



Table 4. Results for the power-analysis attacks on
Zorro running in hiding mode (HM).

Mode ti Windowing ρc,theory ρc,pract

HM1 16 no 0.044 0.049
HM1 16 yes 0.176 0.237

HM2 24 no 0.029 0.031
HM2 24 yes 0.152 0.160

HM15 128 no 0.005 -
HM15 128 yes 0.062 0.057

Table 5.Min. number of mea-
surements required.

Mode Nmeas

NM <100
HM1 285
HM2 625
HM15 4 925

HM240 † 70 000
MM 3-share 70 000

† not supported by Zorro

Normal mode: The CPA attack was performed with 1 000 power traces lead-
ing to ρc =0.76. This ρc value indicates that less than 50 measurements are
su�cient to distinguish the correct key hypothesis from the wrong key hypothe-
ses [16].

Hiding mode: Next, we have activated hiding on the Zorro ASIC. The num-
ber of dummy rounds (Ndr) has been set to 1 (HM1 ), which means that zero
or one dummy operation is randomly inserted in front of the �rst Keccak-f
permutation working on the real data. Moreover, as soon as the hiding mode
is activated, the execution order during each slice-processing operation is ran-
domized. As a result, the targeted operation can appear at 16 di�erent time
instances ti. According to [16], ρc should decrease by a factor of 1

ti compared to
the unprotected case. When taking into account ρc of 0.7 for the unprotected
case and ti = 16, this leads to an expected ρc,theory value for the protected
implementation of 0.7

16 = 0.044. Attacks on the protected implementation yield
ρc,pract =0.049, what �ts well with theory. Next, windowing has been applied
combining all the 16 time instances. According to [16], windowing should in-
crease ρc by a factor of

√
16 for our attack. With windowing applied, our prac-

tical attacks yield ρc,pract=0.237, what is signi�cantly higher than the expected
value ρc,theory=0.176. Further practical experiments have been performed with
Ndr = 2 (HM2 ) leading to a ρc,pract value of 0.031 without and 0.160 with
windowing applied. Again, these values �t well with theory. Zorro allows a
maximum Ndr of 15 (HM15 ), here practical results with windowing applied
yield ρc,pract=0.057 what is again close to ρc,theory=0.062. Without windowing
applied, no signi�cant results can be observed with 100 000 measurements. Due
to that reason, for HM15 without windowing we can only give ρc,theory=0.005.
Table 4 summarizes the results with regard to the hiding mode.

Masked mode: In a next experiment we performed power-analysis attacks
targeting the �rst θ step on Zorro running in masked mode (hiding was deac-
tivated for this experiment). 1st-order CPA attacks using 100 000 power traces
captured from the ASIC did not succeed. No signi�cant correlation peaks could

6 The con�dence interval of the coe�cient, where 99.99% of all samples (4-σ border)
are located in the normal distribution model for 1 000 traces, is about 0.12.



1000 1200 1400 1600 1800 2000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time [ns]

C
o

rr
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

Fig. 9. 3rd-order CPA result for the cor-
rect key guess using 100 000 ASIC traces
(Zorro running in masked mode).
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Fig. 10. Course of the correlation coe�-
cient of Zorro running in masked mode
(3rd-order CPA).

be observed in the result. Due to the clear patterns in the power traces, the time
instances, where the �rst θ steps of each share are performed, can be identi�ed
with small e�ort. By combining the revealed time instances, a 3rd-order CPA
attack has been mounted. The centralized product combining has been used as
combination function, as suggested by Prou� et al. [21]. As shown in Fig. 9, this
attack results in a signi�cant correlation peak for the correct key hypothesis
with ρc =0.016. Fig. 10 shows the course of the correlation coe�cients for all
key guesses. With less than 70 000 measurements the correct key hypothesis can
be distinguished from the wrong key hypotheses. Note that since the modi�ca-
tions between the 3-Share and 3-Share* implementation solely a�ect the χ step
(and not the herein targeted θ operation), the results of the 3rd-order CPA are
identical for both three-share based architectures.

Comparison masking mode and hiding mode: Our �rst attack results show
that both hiding as well as masking increase the e�ort for an attack. Attacks
on the implementation using hiding also succeed without any modi�cation of
the traces (e.g., windowing). But, if windowing is applied, ρc only decreases
by a factor of 1√

ti
instead of 1

ti . That means, windowing drastically reduces

the number of required measurements Nmeas for performing a successful attack.
Attacks on the masked implementation do not succeed without combination of
the traces, at least not if the shares are calculated sequentially during the �rst θ
step, as it is the case with Zorro. In order to reach the same security level with
hiding as with masking, 240 dummy rounds would be required. Each additional
dummy round leads to eight additional time instances for the targeted operation
to appear, so ti = 240 · 8 = 1920 for 240 dummy rounds. As a consequence, ρc
decreases to 0.7√

1920
= 0.016. This is now equal to ρc achieved with a 3rd-order

CPA targeting the masked implementation. However, with 240 dummy rounds,
the runtime of the implementation running in hiding mode exceeds the runtime of
the implementation running in masked mode. Table 5 summarizes the number of
required measurements Nmeas for a successful key recovery. For the unprotected
case (NM ), less than 100 measurements are su�cient, for the hiding mode with
the weakest protection (HM1 ), Nmeas = 285, and for the hiding mode with
the highest protection (HM15 ), Nmeas = 4925 respectively. Note that Nmeas



for HM1, HM2, and HM15 all assume that windowing is applied. Successful
attacks targeting the masked mode (MM3-share) require 70 000 measurements.
240 dummy rounds (HM240 ) would also yield Nmeas = 70 000 but this mode is
not supported by Zorro since 15 is the maximum number of dummy rounds.

5 Conclusions and Future Work

Zorro represents the �rst actually taped-out ASIC, hosting Keccak-based
authenticated encryption systems secured against DPA attacks. It contains three
distinct architectures, which solely di�er with regard to the implemented secret-
sharing technique. In addition to the DPA-secure designs, we aimed at low-area
hardware architectures, targeting resource-constrained applications.

As future work, we are looking forward to investigate more DPA attacks
targeting di�erent intermediates of Keccak. In addition to target the output of
the θ step, we want to target the output of the χ step as e�ects like glitches or
early-propagation might allow successful DPA attacks with a lower order than 3.
This will also enable a comparison of the three masking-secured implementations.
Furthermore, we want to increase the number of traces up to several millions to
identify unintended leaks. Finally, we plan to apply powerful Test Vector Leakage
Assessment (TVLA) tests (including the �xed-vs-random t-test) to detect non-
speci�c leakages and to verify the DPA resistance of our cores.
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