
Faster Mask Conversion with Lookup Tables

Praveen Kumar Vadnala and Johann Großschädl

University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security,

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg
{praveen.vadnala,johann.groszschaedl}@uni.lu

Abstract. Masking is an effective and widely-used countermeasure to
thwart Differential Power Analysis (DPA) attacks on symmetric cryp-
tosystems. When a symmetric cipher involves a combination of Boolean
and arithmetic operations, it becomes necessary to convert masks from
one form to the other. There exist a few algorithms for mask conver-
sion that are secure against first-order DPA attacks, but they can not be
generalized to higher orders. At CHES 2014, Coron-Großchädl-Vadnala
(CGV) introduced a secure conversion scheme between Boolean and arith-
metic masking of any order, but their approach requires d = 2t+1 shares
to protect against attacks of order t. In this paper, we improve the al-
gorithms for second-order conversion using lookup tables so that only
three shares instead of five are needed, which is the minimal number for
second-order security. Furthermore, we also improve the first-order secure
addition algorithm due to Karroumi-Richard-Joye, again using lookup
tables. We prove the security of all proposed algorithms on the basis of
well established assumptions and models. Finally, we provide experimen-
tal evidence of our improved mask conversion applied to HMAC-SHA-1.
Our results show that the proposed algorithms improve the execution
time by 85% and do so with negligible memory overhead.

Keywords: Side-channel analysis (SCA), arithmetic masking, Boolean
masking, provably secure masking, HMAC-SHA-1

1 Introduction

Ever since the introduction of Side-Channel Analysis (SCA) attacks in the late
’90s, there has been a massive body of research on finding effective countermea-
sures to thwart these attacks, in particular the highly effective Differential Power
Analysis (DPA) attacks [9,10]. From a high-level perspective, DPA countermea-
sures aim to either randomize the power consumption (which can be done in
both the time and amplitude domain) or make it completely independent from
the processed data. The goal of both approaches is to eliminate (or, at least,
reduce) the correlation between the power consumption and the key-dependent
intermediate variables processed during the execution of a cryptographic algo-
rithm. Concrete examples for randomization in the time domain include various
“hiding” countermeasures such as the insertion of random delays or the shuffling

2 Praveen Kumar Vadnala and Johann Großschädl

of operations. On the other hand, the most important example of randomization
in the amplitude domain is masking, which aims to conceal each sensitive inter-
mediate variable x with a random value x2, called mask [2]. This means that x is
represented by two shares, namely the masked variable x1 = x⊕x2 and the mask
x2. The shares need to be manipulated separately throughout the execution of
the algorithm to ensure that the instantaneous power consumption of the device
does not leak any information about x. Indeed, a straightforward DPA attack
may yield x1 or x2 (both of which appear as random numbers to the attacker),
but knowledge of x1 alone or x2 alone should not reveal any information about
the sensitive variable x.

One of the main challenges when applying masking to a block cipher is to
implement the round functions in a way that the shares can be processed inde-
pendently from each other, while it still must be possible to recombine them at
the end of the execution to get the correct result. This is fairly easy for all linear
operations, but may introduce significant overheads for the non-linear parts of a
cipher, i.e. the S-boxes. In addition, all round functions need to be executed twice
(namely for x1 and x2, where x = x1 ⊕ x2), which entails a further performance
penalty. Moreover a basic masking scheme as described above is vulnerable to a
so-called second-order DPA attack, in which an attacker combines information
from two leakage points. Namely, he exploits the side-channel leakage originat-
ing from x1 and x2 simultaneously [12]. Such a second-order DPA attack can,
in turn, be thwarted by second-order masking in which each sensitive variable is
concealed with two random masks and represented by three shares. In general, a
d-th order masking scheme uses d random masks to split a sensitive intermediate
variable into d + 1 shares x1, x2, . . . , xd+1 satisfying x1 ⊕ x2 ⊕ · · · ⊕ xd+1 = x,
which are processed independently. In this way, it is guaranteed that the joint
distribution of any subset of up to d shares is independent of the secret key. Only
a combination of all d+1 shares (i.e. the masked variable x1 = x⊕x2⊕· · ·⊕xd+1

and the dmasks x2, . . . , xd+1) is jointly dependent on the sensitive variable. How-
ever, given a sufficient amount of noise, the effort for attacking a higher-order
masked implementation increases exponentially with d [2].

Depending on the algorithmic properties of a block cipher, a masking scheme
may have to protect Boolean operations (e.g. xors, shifts) or arithmetic opera-
tions (e.g. modular additions). When a cipher involves both Boolean and arith-
metic operations, it is necessary to convert the masks from one form to the other
to obtain the correct ciphertext (resp. plaintext). Examples of symmetric algo-
rithms that involve arithmetic as well as Boolean operations include the hash
functions SHA-1, SHA-2, Blake and Skein, various ARX-based block ciphers (e.g.
XTEA, Threefish) and all four finalists of the eStream software portfolio. Given
the widespread deployment of these cryptosystems in various kinds of applica-
tions (including ones that require sophisticated countermeasures against DPA),
it is important to develop efficient techniques for conversion between Boolean and
arithmetic masks. However, almost all conversion methods reported in the liter-
ature are only applicable to first-order masking [4–6, 8, 11]. Two exceptions are
the second-order conversion scheme of Vadnala and Großschädl [14] and recent

Faster Mask Conversion with Lookup Tables 3

higher-order conversion scheme by Coron-Großschädl-Vadnala [3]. We briefly re-
call these schemes below.

Vadnala-Großschädl Scheme [14]. The foundation of this scheme is the
generic second-order countermeasure proposed by Rivain, Dottax and Prouff [13].
The algorithm to compute a second-order secure masked S-box output from a
second-order secure masked input due to Rivain et al. is recalled below.

Algorithm 1 Sec2O-masking

Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:
(y1, y2) ∈ F2m , and an (n,m) S-box lookup function S

Output: Masked S-box output: S(x)⊕ y1 ⊕ y2
1: r ← Rand(n)
2: r′ ← (r ⊕ x2)⊕ x3
3: for a := 0 to 2n − 1 do
4: a′ ← a⊕ r′
5: T [a′]← ((S(x1 ⊕ a)⊕ y1)⊕ y2)
6: end for
7: return T [r]

In Algorithm 1, a lookup table is created for all possible values of x. The
index to the lookup table is masked using a random number r. Then, the correct
value of the share is obtained by retrieving the table entry corresponding to
the index r. The main idea here is that the actual computation of the third
arithmetic share is hidden among other dummy calculations for all the possible
values. Since the value of r changes for every iteration, the attacker will not be
able to guess the point in time at which the actual value of x is being leaked.
In [13], the authors proved the security of the algorithm by proving that no pair
of intermediate variables leaks any sensitive value.

In second-order Boolean to arithmetic conversion, the goal is to solve the
problem of computing arithmetic shares from a given set of Boolean shares with-
out introducing any second or first-order leakage. To achieve second-order DPA
resistance, we need three Boolean shares x1, x2, x3 so that the sensitive variable x
is given by x = x1⊕x2⊕x3. The goal is to find three arithmetic shares A1, A2, A3

satisfying x = A1+A2+A3 without leaking any first or second-order information
about x. The solution given by Vadnala and Großschädl modifies the masked
lookup table in Algorithm 1 to store the value ((x1 ⊕ a) − A2) − A3 instead of
masked S-box output. The rest of the algorithm is similar to the original. They
followed the same approach in the case of arithmetic to Boolean conversion.

Coron-Großschädl-Vadnala Scheme [3]. At CHES 2014, Coron, Großschädl
and Vadnala proposed conversion algorithms secure against attacks of any order
[3]. They first proposed a secure solution to add Boolean shares directly, by

4 Praveen Kumar Vadnala and Johann Großschädl

generalizing Goubin’s recursion formula [6]. Their solution has a complexity
O(d2 · n) to secure against t-th order attacks, where d ≥ 2t + 1 and n is the
size of the masks. Then they used this as a subroutine to derive algorithms for
converting between Boolean and arithmetic masking again with the complexity
O(d2 · n).

Our Contributions. The generic solution proposed by Coron-Großschädl-
Vadnala requires 5 shares to protect against second-order attacks, which entails
a significant overhead in terms of the required amount of random numbers and
execution time. Though the algorithms proposed by Vadnala and Großschädl
secure against second-order attacks require only 3 shares, they become infeasi-
ble for implementation on low-resource devices like smart cards for n > 10 (the
additions are performed modulo 2n), as we require lookup table of size 2n.

In this paper, we propose second-order secure conversion algorithms, which
overcome the above limitations and can be easily applied to cryptographic con-
structions with arbitrary n, e.g. HMAC-SHA-1 with n = 32. The proposed
algorithms use only 3 shares and are significantly faster than the state-of-the-
art. Our solution follows the basic concept of Vadnala and Großschädl (which,
in turn, is based on the work of Rivain and Prouff), but uses a divide and con-
quer approach so as to prevent the lookup tables becoming prohibitively large.
In the case of Boolean to arithmetic conversion, we divide the Boolean shares
into words of l ≤ 8 bits and compute the words of the corresponding arithmetic
shares independently in a word-by-word fashion. Part of this procedure is to
handle the carries propagating from less to more significant words, which also
need to be protected by masking to prevent any first or second-order leakage.
We demonstrate that this can be achieved in an efficient and secure fashion by
using separate look-up tables for the carries. Furthermore, we prove the security
of our conversion schemes in the same model as in [13]. Using the similar tech-
niques, we show that the efficiency of first-order secure masked addition due to
Karroumi, Richard and Joye [8] can also be improved.

2 Efficient Second-Order Secure Boolean to Arithmetic
Masking

In this section we give the efficient Boolean to arithmetic conversion algorithm
secure against attacks of second-order. The idea here is that we divide the n-bit
shares into p words (of l bits each) and convert each word independently.

2.1 Boolean to Arithmetic Masking of second-order

The problem here is, we are given three Boolean shares x1, x2, x3 so that the
sensitive variable x is obtained by x = x1 ⊕ x2 ⊕ x3. The goal is to find three
arithmetic shares A1, A2, A3 satisfying x = A1+A2+A3 without leaking any first
or second-order information about x. This can be achieved by generating two

Faster Mask Conversion with Lookup Tables 5

shares A2 and A3 randomly and computing the third share as: A1 = x−A2−A3

as done in [14] using the approach followed by Rivain et al. in [13]. But as
mentioned earlier, their scheme becomes infeasible to be used in practice when
n > 10, as it requires a lookup table of size 2n. To obtain a solution for n > 10, we
use divide and conquer approach. That is, we divide each share into p words of l
bits each, and compute (Ai

1)(0≤i≤p−1) independently, where A1 = Ap−1
1 || · · · ||A0

1.
In this case, we also need to handle the carries from word i to word i+ 1. These
carries in turn also need to be protected by masking, which can leak information
about the sensitive variable otherwise. In the following, we present our method
to protect the sensitive variables along with carries and demonstrate its security
with a formal proof.

We differentiate between two sets of carries: input carries i.e., carries used
in computing Ai

1 and output carries i.e., carries raised while computing Ai
1. As

computing Ai
1 involves two subtractions, there will be two output carries from

each word i, which become input carries for the word i + 1. For the first word,
input carries are initialized to 0, i.e., c01 = 0, c02 = 0. We compute Ai

1 from the
input xi and carries ci1, c

i
2 as follows:

Ai
1 = (xi −l c

i
1 −l A

i
2 −l c

i
2 −l A

i
3)

Here the operation a−l b represents (a−b) mod 2l. Similarly, the output carries
ci+1
1 , ci+1

2 are computed as follows:

ci+1
1 = Carry(xi, ci1)⊕ Carry(xi −l c

i
1, A

i
2) (1)

ci+1
2 = Carry(xi −l c

i
1 −l A

i
2, c

i
2)⊕ Carry(xi −l c

i
1 −l A

i
2 −l c

i
2, A

i
3) (2)

where Carry(a, b) represents the carry from the operation (a− b). Note that each
of the carry computation involves two subtractions: one with the input carry
and the other with one of the random shares i.e., Ai

2 or Ai
3. In the simplest case,

a subtraction a − b produces a carry if a < b. However, in our case, we have
operations of the form (a−l c)−l b where both a and b are l-bit integers and c is
either 0 or 1. In the case of c = 0, the above operation generates a carry if a < b.
But when c = 1, we have to consider another case, namely a < c, which can only
happen if a = 0 and c = 1. In this special case, the difference a −l c becomes
2l−1, thereby producing a carry that needs to be handled as well. However, there
won’t be a carry from the second subtraction as b ≤ 2l−1. Namely, the carries
from these two cases are mutually exclusive; hence the output carry is set to one
when either of them produces a carry as shown in (1) and (2). For simplicity, we
define functions F1 : {0, 1}l+1 → {0, 1}l+1, F2 : {0, 1}2l → {0, 1}l+1 as follows:

F1(a, b) = a−l b||(Carry(a, b)) (3)

F2(a, b) = a−l b||(Carry(a, b)) (4)

For the word i, we can compute Ai
1 as well as the output carries ci+1

1 , ci+1
2

using F1 and F2 as follows:

(Bi
1||di1) = F1(xi, ci1)

6 Praveen Kumar Vadnala and Johann Großschädl

(Bi
2||di2) = F2(Bi

1, A
i
2)

(Bi
3||di3) = F1(Bi

2, c
i
2)

(Bi
4||di4) = F2(Bi

3, A
i
3)

where Ai
1 = Bi

4 and ci+1
1 = di1 ⊕ di2, ci+1

2 = di3 ⊕ di4. According to [13], the S-box
must be balanced for their scheme to be secure 1. In our case, the function F1

plays the same role and is balanced. Hence, the security guarantee is preserved.
We first present non-randomized version of our solution below for simplicity.

Algorithm 2 Insecure 20B→A
Input: Sensitive variable: x = x1 ⊕ x2 ⊕ x3
Output: Arithmetic shares: x = A1 +A2 +A3

1: c01, c
0
2 ← 0 . Initially carry is zero

2: for i := 0 to p− 1 do
3: Ai

2, A
i
3 ← Rand(l) . Generate output masks randomly

4: (Bi
1, d

i
1)← F1(xi, ci1)

5: (Bi
2, d

i
2)← F2(Bi

1, A
i
2)

6: (Bi
3, d

i
3)← F1(Bi

2, c
i
2)

7: (Bi
4, d

i
4)← F2(Bi

3, A
i
3)

8: (Ai
1, c

i+1
1 , ci+1

2)← (Bi
4, d

i
1 ⊕ di2, di3 ⊕ di4)

9: end for
10: return A1, A2, A3

The challenge now is to obtain the same result without leaking any first or
second-order information about the sensitive variable x as well as the carries
ci1, c

i
2 for 0 ≤ i ≤ p − 1. We present our solution in two parts: we fist give the

algorithm to compute the result for one word i.e. Ai
1 securely; then we use this as

a subroutine to compute A1. Our solution given in Algorithm 3 uses the similar
technique used by Rivain et al in [13] (Recalled in Algorithm 1) in combination
with Algorithm 2. Algorithm 3 takes as input: three Boolean shares, six input
carry shares (three each for the two carries), two output arithmetic shares and
four output carry shares. It returns the third arithmetic share and the remaining
two output carry shares. Similar to Algorithm 1, we create a lookup table T for
all the possible values in [0, 2l+2−1]. Here l bits are used for storing Ai

1 and two
bits for the two carries correspondingly. As we can see, the rest of the algorithm
is similar to the original algorithm except for handling two extra bits for the
carry. 2

1 An S-box S : {0, 1}n → {0, 1}m is said to be balanced if every element in {0, 1}m is
image of exactly 2n−m elements in {0, 1}n under S.

2 We use different tables for storing the value and the carries so that the security proof
can be easily obtained as in [13].

Faster Mask Conversion with Lookup Tables 7

Algorithm 3 Sec20B→A Word

Input: Three input shares: (xi1 = xi ⊕ xi2 ⊕ xi3, xi2, xi3) ∈ F2l , Six input carry shares:
gi1 = ci1 ⊕ gi2 ⊕ gi3, gi2, gi3, gi4 = ci2 ⊕ gi5 ⊕ gi6, gi5, gi6 ∈ F2, Output arithmetic shares:
Ai

2, A
i
3, Output carry shares: hi

1, h
i
2, h

i
3, h

i
4

Output: Masked Arithmetic share: (xi −l A
i
2)−l A

i
3 and masked output carries

1: r1 ← Rand(l); r2 ← Rand(1); r3 ← Rand(1)
2: r′1 ← (r1 ⊕ xi2)⊕ xi3; r′2 ← (r2 ⊕ gi2)⊕ gi3; r′3 ← (r3 ⊕ gi5)⊕ gi6;
3: for a1 := 0 to 2l − 1, a2 := 0 to 1, a3 := 0 to 1 do
4: a′1 ← a1 ⊕ r′1; a′2 ← a2 ⊕ r′2; a′3 ← a3 ⊕ r′3
5: (Bi

1, d
i
1)← F1((xi1 ⊕ a1), (gi1 ⊕ a2))

6: (Bi
2, d

i
2)← F2(Bi

1, A
i
2)

7: (Bi
3, d

i
3)← F1(Bi

2, (g
i
4 ⊕ a3))

8: (Bi
4, d

i
4)← F2(Bi

3, A
i
3)

9: ei1 ← ((di1 ⊕ hi
1)⊕ di2)⊕ hi

2

10: ei2 ← ((di3 ⊕ hi
3)⊕ di4)⊕ hi

4

11: (T1[a′1||a′2||a′3], T2[a′1||a′2||a′3], T3[a′1||a′2||a′3])← (Bi
4, e

i
1, e

i
2)

12: end for
13: return T1[r1||r2||r3], T2[r1||r2||r3], T3[r1||r2||r3]

Finally, we give our second-order secure method to obtain three arithmetic
shares corresponding to the three Boolean shares in Algorithm 4. For the first
word (i.e. i = 0), there are no input carries. Hence, the three shares for both
the carries are set to zero (Step 1). Here, g01 = g02 = g03 = c01 = 0 and
g04 = g05 = g06 = c02 = 0. To protect the output carries, we use four uniformly
generated random bits: hi1, h

i
2, h

i
3, h

i
4; two each for the two carries. The third

share for the carries as well as Ai
1 are computed recursively using the function

Sec20B→A Word (Algorithm 3) 3. Note here that for word i, gi1 ⊕ gi2 ⊕ gi3 = ci1
and gi4 ⊕ gi5 ⊕ gi6 = ci2. The time complexity of the overall solution is O(2l+2 · p)
and the memory required is (2l+2 · (l + 2)) bits.

Algorithm 4 Sec20B→A
Input: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3
Output: Arithmetic shares: A1, A2, A3 so that x = A1 +A2 +A3

1: g01 , g
0
2 , g

0
3 , g

0
4 , g

0
5 , g

0
6 ← 0 . Initially carry is zero

2: for i := 0 to p− 1 do
3: Ai

2, A
i
3 ← Rand(l) . Generate output masks randomly

4: hi
1, h

i
2, h

i
3, h

i
4 ← Rand(1)

5: (Ai
1, g

i+1
1 , gi+1

4)← Sec20B→A Word ((xij)1≤j≤3, (g
i
j)1≤j≤6, A

i
2, A

i
3, (h

i
j)1≤j≤4)

6: gi+1
2 , gi+1

3 , gi+1
5 , gi+1

6 ← hi
1, h

i
2, h

i
3, h

i
4

7: end for
8: return A1, A2, A3

3 Every call to the function Sec20B→A Word creates a new table and used for that
particular word only. Hence unlike the original method in [13], we don’t reuse the
table.

8 Praveen Kumar Vadnala and Johann Großschädl

2.2 Security Analysis.

For an algorithm to be secure against second-order attacks, no pair of the in-
termediate variables appearing in the algorithm should jointly leak the sensitive
variable. In [13] the authors prove the security by enumerating all the possible
pairs of intermediate variables and showing that the joint distribution of none
of these pairs is dependent on the distribution of the sensitive variable. We use
similar method to prove the security of Algorithm 3. We then prove the security
of Algorithm 4 using induction.

Lemma 1. Algorithm 3 is secure against second-order DPA.

Proof. We list all the intermediate variables used in Algorithm 1 and Algorithm 3
in Table 1. The intermediate variables computed using similar technique appear
in the same row. The only difference is that we have three intermediate variables
instead of one for each row. 4 Hence, the security of Algorithm 3 can be derived
from the same arguments as in case of Algorithm 1.

Intermediate variables in Intermediate variables in
Algorithm 1 Algorithm 3

x2 xi
2, g

i
2, g

i
5

x3 xi
3, g

i
3, g

i
6

y1 Ai
2, h

i
1, h

i
3

y2 Ai
3, h

i
2, h

i
4

r r1, r2, r3
x2 ⊕ r xi

2 ⊕ r1, g
i
2 ⊕ r2, g

i
5 ⊕ r3

x2 ⊕ r ⊕ x3 xi
2 ⊕ r1 ⊕ xi

3, g
i
2 ⊕ r2 ⊕ gi

3, g
i
5 ⊕ r3 ⊕ gi

5

a a1, a2, a3

a⊕ r ⊕ x2 ⊕ x3 a1 ⊕ r′1, a2 ⊕ r′2, a3 ⊕ r′3

x1 = x⊕ x2 ⊕ x3 xi
1 = xi ⊕ xi

2 ⊕ xi
3, g

i
1 = ci1 ⊕ gi

2 ⊕ gi
3, g

i
4 = ci2 ⊕ gi

3 ⊕ gi
6

x1 ⊕ a xi
1 ⊕ a, gi

1 ⊕ a2, g
i
4 ⊕ a3

S(x1 ⊕ a) (Bi
1||d

i
1) = F1((x

i
1 ⊕ a), gi

1 ⊕ a2)

(Bi
3||d

i
3) = F1((x

i
1 ⊕ a)−l g

i
1 ⊕ a2 −l A

i
2, g

i
4 ⊕ a3)

di
2 = Carry((xi

1 ⊕ a)−l (g
i
1 ⊕ a2), A

i
2)

di
4 = Carry((xi

1 ⊕ a)−l (g
i
1 ⊕ a2)−l A

i
2 −l (g

i
4 ⊕ a3), A

i
3)

S(x1 ⊕ a)⊕ y1 Bi
2 = (xi

1 ⊕ a)−l (g
i
1 ⊕ a2)−l A

i
2,

di
1 ⊕ hi

1 ⊕ di
2, d

i
3 ⊕ hi

3 ⊕ di
4

S(x1 ⊕ a)⊕ y1 ⊕ y2 Bi
4 = (xi

1 ⊕ a)−l (g
i
1 ⊕ a2)−l A

i
2 −l (g

i
4 ⊕ a3)−l A

i
3,

di
1 ⊕ hi

1 ⊕ di
2 ⊕ hi

2, d
i
3 ⊕ hi

3 ⊕ di
4 ⊕ hi

4

S(x)⊕ y1 ⊕ y2 xi −l c
i
1 −l A

i
2 −l c

i
2 −l A

i
3,

ci+1
1 ⊕ hi

1 ⊕ hi
2, c

i+1
2 ⊕ hi

3 ⊕ hi
4

Table 1. Comparison between Intermediate variables used in Algorithm 1 and Algo-
rithm 3

Theorem 1. Algorithm 4 is secure against second-order DPA.

4 The only exception is for the row S(x1 ⊕ a), where we have four variables.

Faster Mask Conversion with Lookup Tables 9

Proof. To prove the security of Algorithm 4, we apply mathematical induction
on the number of words p. When p = 1, we already know that the algorithm
is secure from Lemma 1. Now assume that the algorithm is secure for p = n.
Let Ei be the set that represents the collection of all the intermediate vari-
ables corresponding to the word i. Then, according to the induction hypothesis,
{E1, · · ·En}×{E1, · · ·En} is independent of the sensitive variables x, c1 and c2.

For the algorithm to be secure when p = n+ 1, the set {E1, · · ·En, En+1} ×
{E1, · · ·En, En+1} should be independent of the sensitive variables x, c1 and c2.
Without loss of generality, we divide this set into three subsets: {En+1×En+1},
{E1, · · ·En}×{E1, · · ·En}, {En+1}×{E1, · · ·En}. The security of {En+1×En+1}
can be established directly from the base case and the security of {E1, · · ·En}×
{E1, · · ·En} follows from the induction hypothesis. All the intermediate variables
in En+1 fall into two categories: the variables that are generated randomly and
are independent of any variables in {E1, · · ·En}; and the variables which are a
function of one or more of the following: (xn+1), (cn+1

1) and (cn+1
2). Any pair

of the intermediate variables involving the first category are independent of the
sensitive variables by definition and the first-order resistance of {E1, · · ·En}.
The carry shares for the word n+1: (cn+1

i)1≤i≤2 are computed from the word n.
Hence the security of (cn+1

i)1≤i≤3×{E1, · · ·En} is already established in {En}×
{E1, · · ·En}. It is easy to see that the set (xn+1)×{E1, · · ·En} is independent of
any sensitive variable. Hence, the set {En+1} × {E1, · · ·En} is also independent
of any sensitive variable, which proves the theorem.

3 Efficient Second-Order Secure Arithmetic to Boolean
Masking

In arithmetic to Boolean conversion, the problem is to find three shares x1, x2, x3
satisfying x = x1⊕x2⊕x3, where the sensitive variable x is represented by three
arithmetic shares A1, A2, A3 with x = A1 + A2 + A3. To solve this problem,
we follow the same strategy as in Section 2.1. We generate two Boolean shares
x2 and x3 randomly, and compute the third share by using the relation x1 =
((A1 + A2 + A3) ⊕ x2 ⊕ x3), without leaking the value of x to first or second-
order DPA. We use the following approach: we first obtain a method to convert a
single arithmetic share word; then we apply this procedure recursively to all the
words. For each word, we have to deal with two carries corresponding to the two
additions, i.e., the carry from the addition of the shares corresponding to A2, A3

and its subsequent addition with A1. Our solution is described in Algorithm 5
and Algorithm 6 .

10 Praveen Kumar Vadnala and Johann Großschädl

Algorithm 5 Sec20A→B Word

Input: Three input shares: (Ai
1 = (xi−Ai

2)−Ai
3, A

i
2, A

i
3) ∈ F2l , Six input carry shares:

gi1 = ci1 ⊕ gi2 ⊕ gi3, gi2, gi3, gi4 = ci2 ⊕ gi5 ⊕ gi6, gi5, gi6 ∈ F2, Output Boolean shares:
xi2, x

i
3, Output carry shares: hi

1, h
i
2, h

i
3, h

i
4

Output: Third Boolean share: xi1 = xi ⊕ xi2 ⊕ xi3 and masked output carries
1: r1 ← Rand(l); r2 ← Rand(1); r3 ← Rand(1)
2: r′1 ← (Ai

2 − r1) +Ai
3 . Mask two arithmetic shares

3: r′2 ← (r2 ⊕ gi2)⊕ gi3; r′3 ← (r3 ⊕ gi5)⊕ gi6
4: for a1 := 0 to 2l − 1 do
5: a′1 ← a1 −l r

′
1 . a′1 = r1 =⇒ a = Ai

2 +Ai
3

6: for a2 := 0 to 1, a3 := 0 to 1 do
7: a′2 ← a2 ⊕ r′2; a′3 ← a3 ⊕ r′3
8: (Bi

1||di2)← F3(Ai
1 + a3 + (a2 +l a1))

9: di1 ← Carry(a1, r
′
1)⊕ Carry(a1,−a2)

10: xi1 ← (B1 ⊕ xi2)⊕ xi3 . Apply Boolean masking to the result
11: ei1 ← (di1 ⊕ hi

1)⊕ hi
2 . Apply masking to the carries

12: ei2 ← (di2 ⊕ hi
3)⊕ hi

4

13: T1[a′1||a′2||a′3], T2[a′1||a′2||a′3], T3[a′1||a′2||a′3]← (xi1, e
i
1, e

i
2)

14: end for
15: end for
16: return T1[r1||r2||r3], T2[r1||r2||r3], T3[r1||r2||r3]

Algorithm 5 gives the solution for converting one word of Boolean shares to
corresponding arithmetic shares. We again use the technique from Algorithm 1
as in Algorithm 3. As the input shares here are masked using arithmetic mask-
ing instead of Boolean masking, we have to modify the operations accordingly.
Hence, the computation of r′1 (Step 2) and a′1 (Step 5) are replaced with addi-
tive operations. However, we can still mask the carries using Boolean masking
as previously and hence the corresponding operations do not change (Step 3,
Step 7). We create a table for all possible values in [0, 2l+2 − 1], where l bits
are used for xi1 and the extra two bits for the carries. From a′1 = a1 −l r

′
1,

we have a1 = a′1 +l r
′
1. However, a1 − r′1 could generate a carry, which needs

to be taken care while computing xi1. Hence, we compute the value of a1 as:
a1 = (a′1 +l r

′
1 +l a2), where a2 is the carry from the previous word. This ensures

that for a′1 = r1, we have:

a1 = (r1 +l ((Ai
2 − r1) +Ai

3) +l a2) = Ai
2 +Ai

3

The out carry di1 (which becomes a2 for the next word) can occur in two
scenarios: when a1 < r′1 or when (a1 + a2) ≥ 2l (Step 9). It is easy to see that
these two cases are mutually exclusive. Now to compute xi1, we use function
F3 : {0, 1}l+1 → {0, 1}l+1, which is defined as:

F3(a) = a mod 2l||Carry(2l, a)

We then call F3 with (Ai
1 + a3 + (a2 +l a1)) where a3 represents the second

carry. In this case, the first part returned by F3 gives xi, and the second part

Faster Mask Conversion with Lookup Tables 11

corresponds to the second carry which becomes a3 for the next word 5. Namely,
when a′1 = r1,

F3(Ai
1 + a3 + (a2 +l a1)) = ((Ai

1 + a3 + (a2 +l a1))) mod 2l||
Carry(2l, (Ai

1 + a3 + (a2 +l a1)))

= (xi + a3) mod 2l||Carry(2l, (xi + a3))

Once we have xi and the carries di1, d
i
2, we can simply apply boolean masks on

them to obtain xi1 and the masked carries (Steps 10, 11 and 12).
Finally we give the full algorithm to convert from arithmetic to Boolean

masking in Algorithm 6. It is similar to Algorithm 4 except that the Boolean
shares and arithmetic shares are interchanged.

Algorithm 6 Sec20A→B
Input: Arithmetic shares: A1 = x−A2 −A3, A2, A3

Output: Boolean shares: x1, x2, x3 so that x = x1 ⊕ x2 ⊕ x3
1: g01 , g

0
2 , g

0
3 , g

0
4 , g

0
5 , g

0
6 ← 0 . Initially carry is zero

2: for i := 0 to p− 1 do
3: xi2, x

i
3 ← Rand(l) . Generate output masks randomly

4: hi
1, h

i
2, h

i
3, h

i
4 ← Rand(1)

5: (xi1, g
i+1
1 , gi+1

4)← Sec20A→B Word ((Ai
j)1≤j≤3, (g

i
j)1≤j≤6, x

i
2, x

i
3, (h

i
j)1≤j≤4)

6: gi+1
2 , gi+1

3 , gi+1
5 , gi+1

6 ← hi
1, h

i
2, h

i
3, h

i
4

7: end for
8: return x1, x2, x3

Theorem 2. Algorithm 6 is secure against second-order DPA.

Proof. The proof of Algorithm 6 can be obtained similar to Algorithm 4 and is
omitted.

4 Efficient First-Order Secure Masked Addition

As already established, this paper focuses on the problem of dealing with arith-
metic operations on Boolean masks. Till now, we solved this problem by convert-
ing the Boolean masks to arithmetic masks. The idea is that once we have the
arithmetic masks, we can perform arithmetic operations directly and then con-
vert the result back to Boolean masks. But there also exist an alternative solution
to the original problem i.e., devising a solution to perform addition directly on
the Boolean masks. This idea was first studied with respect to first-order mask-
ing in [1] and precised in [8]. In this section, we provide a more efficient method
using lookup tables based on the conversion method proposed by Debraize [5].

5 Note here that even though xi and the carries are computed in clear, they are
hidden among 2l+2 − 1 dummy computations, which is the main basis for Rivain et
al’s original algorithm.

12 Praveen Kumar Vadnala and Johann Großschädl

The problem here is: we are given Boolean shares of two n-bit sensitive
variables x : x1, r and y : y1, s. We need to compute z1 so that z1⊕r⊕s = x+y,
without any first-order leakage of x and y. We follow the similar divide and
conquer approach used in Section 2 and Section 3. Namely, we divide n-bit shares
into p words of l-bit each and perform addition on the words independently.
Moreover, our method also masks the carry from word i to word i + 1. The
addition of each word is performed using a lookup table, which can be reused
for all the words. 6

Our algorithm to generate the lookup table is given in Algorithm 7. It creates
a table of 22l+1 entries, where each entry requires l+ 1 bit memory. Here, 2l bits
are used for two l -bit inputs xi, yi and one bit for the input carry. The output
consists of l-bit zi and one bit carry. We run through all the possible 22l+1 values
and store the masked value of sum and carry in the lookup table. Note here that
the inputs masks are t1, t2 and ρ (carry); the out masks are t1 and ρ (carry).

Algorithm 7 GenTable
Input:
Output: Table T , t1, t2, ρ
1: t1, t2 ← Rand(l); ρ← Rand(1)
2: for A = 0 to 2l − 1 do
3: for B = 0 to 2l − 1 do
4: T [ρ||A||B]← ((A⊕ t1) + (B ⊕ t2))⊕ (ρ||t1)
5: T [ρ⊕ 1||A||B]← ((A⊕ t1) + (B ⊕ t2) + 1)⊕ (ρ||t1)
6: end for
7: end for
8: return T, t1, t2, ρ

The full algorithm to compute addition on Boolean shares is given in Algo-
rithm 8. Initially, the carry is zero which is masked with the carry mask ρ from
Algorithm 7. We differentiate between carry and no carry cases as follows: if
β = ρ then there is no carry; otherwise, β = ρ⊕ 1. Before accessing the lookup
table, we change the input masks to t1 and t2 (step 3, 4). After we obtain the
masked sum, we change the mask back to ri ⊕ si from t1 (step 6). Finally the
output can be obtained as z1 = zp−11 || · · · ||z01 = (x+ y)⊕ r ⊕ s.

6 In case of second-order masking, we use different tables. But we can reuse the table
for first-order masking.

Faster Mask Conversion with Lookup Tables 13

Algorithm 8 Sec10A
Input: x1 = x⊕ r, r, y1 = y ⊕ s, s, T, t1, t2, ρ
Output: z1 = (x+ y)⊕ r ⊕ s
1: β ← ρ
2: for i = 0 to p− 1 do
3: xi1 ← xi1 ⊕ t1 ⊕ ri
4: yi1 ← yi1 ⊕ t2 ⊕ si
5: (β||zi1)← T [β||xi1||yi1]
6: zi1 ← (zi1 ⊕ ri ⊕ si)⊕ (t1)
7: end for
8: return z1

Lemma 2. Algorithm 8 is secure against first-order DPA.

Proof. It is easy to see that the distribution of all the intermediate variables in
Algorithm 8 is independent of the sensitive variables x and y. Hence the proof
is straightforward.

5 Implementation Results

Algorithm ` Time Memory rand

second-order conversion

Algorithm 4 1 12186 8 226

Algorithm 4 2 11030 16 114

Algorithm 4 4 19244 64 58

Algorithm 6 1 10557 8 226

Algorithm 6 2 9059 16 114

Algorithm 6 4 15370 64 58

CGV A→ B [3] - 54060 - 484

CGV B → A [3] - 81005 - 822

first-order addition

KRJ addition [8] - 371 - 1

Algorithm 8 4 294 512 3
Table 2. Implementation results for n = 32 on a 32-bit microcontroller. The column
Time denotes the running time in number of clock cycles, rand gives the number of
calls to the random number generator function, column ` and Memory refers to the
word size and memory required in bytes for the table based algorithms.

We implemented all the proposed algorithms on a 32-bit ARM microcon-
troller. The results are summarized in Table 2. We used three different word
sizes (` = 1, 2, 4) for second-order conversion algorithms and word size ` = 4

14 Praveen Kumar Vadnala and Johann Großschädl

for first-order masked addition.7 To compare our results with the existing tech-
niques, we also implemented CGV method [3] for second-order conversion and
KRJ method [8] for first-order secure addition. As expected, the improvement in
case of second-order conversion algorithms is significant due to the decrease in the
number of shares from five to three. We can see that the conversion algorithms
give best results for ` = 2. Our Boolean to arithmetic conversion algorithm with
negligible memory requirements (around 8 to 64 bytes) is roughly 86% faster
than the CGV algorithm. Similarly, our arithmetic to Boolean conversion algo-
rithm improve the running time by 83%, with equivalent memory requirements.
On the other hand, we improve the performance of first-order algorithms by
roughly 20%.

Algorithm ` Time PF

HMAC-SHA-1 - 104 1

second-order conversion

Algorithm 4, 6 1 9715 95

Algorithm 4, 6 2 8917 85

Algorithm 4, 6 4 15329 147

CGV [3] - 62051 596

first-order addition

KRJ addition [8] - 328 3.1

Algorithm 8 4 308 2.9
Table 3. Running time in thousands of clock cycles and penalty factor compared to
the unmasked HMAC-SHA-1 implementation

To study the implications of our new algorithms on practical implementa-
tions, we applied these techniques to HMAC-SHA-1. The corresponding results
are summarized in Table 3. We can see that in the best case scenario (i.e., ` = 2),
our new algorithms perform 85% better than the existing algorithms. In case of
first-order masking, the improvement is around 6% including the precomputation
time required to create the table.

6 Conclusion

In this paper, we proposed time-memory trade-off solutions for conversion be-
tween Boolean and arithmetic masking for first and second-order. For second-
order conversion, we improved the number of shares required from 5 to 3 when
compared to CGV method. We have shown that with negligible memory overhead
(around 16 bytes), we can improve the performance of the existing algorithms
up to 85%.

One open issue is to find a way to perform addition on Boolean shares directly,
which is secure against attacks of second-order. We can not apply the generic

7 We observed that for ` < 4 KRJ algorithm perform better than ours.

Faster Mask Conversion with Lookup Tables 15

method of [13] in this case because the S-box is not balanced. Such an S-box
would require input of size 2l + 1-bit (l-bit for each of the two arguments to
addition and one bit for input carry) and output the l+ 1-bit sum including the
carry. For this function to be balanced, each of the 2l+1 possible outputs must
be an image of exactly 2l elements. However, this is not true and hence we can
mount a second-order attack. Finding a solution to this problem could further
improve the performance of second-order masking.

References

1. Y. Beak and M.-J. Noh. Differetial power attack and masking method. Trends in
Mathematics, 8:1–15, 2005.

2. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In CRYPTO, 1999.

3. J. Coron, J. Großschädl, and P. K. Vadnala. Secure conversion between boolean
and arithmetic masking of any order. In Cryptographic Hardware and Embed-
ded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings, pages 188–205, 2014.

4. J.-S. Coron and A. Tchulkine. A new algorithm for switching from arithmetic to
Boolean masking. In CHES, pages 89–97, 2003.

5. B. Debraize. Efficient and provably secure methods for switching from arithmetic
to Boolean masking. In CHES, pages 107–121, 2012.

6. L. Goubin. A sound method for switching between Boolean and arithmetic mask-
ing. In CHES, pages 3–15, 2001.

7. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481, 2003.

8. M. Karroumi, B. Richard, and M. Joye. Addition with blinded operands. In
COSADE, 2014.

9. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages
388–397, 1999.

10. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets
of smart cards. Springer, 2007.

11. O. Neiße and J. Pulkus. Switching blindings with a view towards IDEA. In CHES,
pages 230–239, 2004.

12. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In CT-RSA,
pages 192–207, 2006.

13. M. Rivain, E. Dottax, and E. Prouff. Block ciphers implementations provably
secure against second order side channel analysis. In FSE, pages 127–143, 2008.

14. P. K. Vadnala and J. Großschädl. Algorithms for switching between boolean and
arithmetic masking of second order. In SPACE, pages 95–110, 2013.

