
A Biased Fault Attack on the Time Redundancy
Countermeasure for AES

Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen and Debdeep
Mukhopadhyay

Department of Computer Science and Engineering
IIT Kharagpur, India

sikharpatranabis@gmail.com, abhishek.chakraborty@cse.iitkgp.ernet.in,
phuongha@gmail.com, debdeep@cse.iitkgp.ernet.in

Abstract. In this paper we propose the first practical fault attack on
the time redundancy countermeasure for AES using a biased fault model.
We develop a scheme to show the effectiveness of a biased fault model in
the analysis of the time redundancy countermeasure. Our attack requires
only faulty ciphertexts and does not assume strong adversarial powers.
We successfully demonstrate our attack on simulated data and 128-bit
time redundant AES implemented on Xilinx Spartan-3A FPGA.

Keywords: Cryptanalysis, Time Redundancy, Biased Faults, AES

1 Introduction

Implementation attacks on secure embedded systems come in different flavors.
One of these is the Side-Channel Analysis (SCA) such as Differential Power
Analysis [8]. The other popular variety is the active Fault Analysis (FA) involving
injection of faults into cryptographic systems and analysis under different fault
models [2]. Attacks such as the Differential Fault Intensity Analysis (DFIA)
[4] have in fact combined DPA with fault injection principles to obtain biased
fault models. The advantage of a biased fault model lies in the ability of the
adversary to derive an intermediate key-dependent state variable under several
key hypotheses. The correct key hypothesis produces small changes to the faulty
state while incorrect ones infer big, random changes.

This work attacks the time redundancy countermeasure using a biased fault
model. The model is not as strict as some proposed earlier, such as stuck-at-zero
or stuck-at-one faults [3]. The time redundancy technique is as an effective coun-
termeasure, in which an encryption is followed by a redundant encryption, and
in the event of a mismatch, the faulty ciphertext is either suppressed or replaced
by a random ciphertext. Literature proposes time redundancy as a classical fault
tolerance technique [11], [10] with the assumption of a uniform unbiased fault
distribution. For a time redundant AES, in order to obtain the faulty cipher-
text, the adversary must introduce exactly the same fault in both the actual



2 Authors Suppressed Due to Excessive Length

Fig. 1: Time redundancy

and redundant round cycles. When the fault distribution is unbiased (as clas-
sically assumed) the probability of occurrence of this event is very low. But a
biased fault model augments this probability to the extent that it is feasible to
obtain sufficient number of faulty ciphertexts to recover the key, while using a
practical number of fault injections, even in the presence of the time redundancy
countermeasure.

This work also assumes that we are operating only on faulty ciphertexts
unlike traditional DFA which requires fault-free ciphertexts as well [1], [9], [6],
[12], [14]. The proposed attack, like Differential Fault Intensity Analysis (DFIA)
[4] targets an affected state variable by a biased fault injection methodology to
retrieve the key. Our contributions are threefold: First, we develop a formulation
for the degree of biasness in the fault distribution. Second, we propose fault
models for biased faults and demonstrate actual fault attacks on a real life AES
implementation with the time redundancy countermeasure. Finally, we establish
through simulations and real life experiments that the number of fault injections
required to defeat the time redundancy countermeasure is inversely proportional
to the biasness of the fault induced.

2 Related Work

2.1 The Time Redundancy Countermeasure

Figure 1 illustrates the use of time redundancy in fault detection. Time redun-
dancy is a fault tolerance technique that uses additional time to perform the
functions of a system multiple times and compares the results to detect faults if
any. A particular advantage of this approach is its low area overhead. The basic
time redundancy technique has essentially three important aspects - repetition
of function computation, storage of results of original and redundant computa-
tions and comparison of results for fault detection. In ciphers, time redundancy



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 3

is often used for concurrent error detection(CED) against DFA by repeating
each round twice and comparing the results. Previous research has proposed
some countermeasures to fault attacks using time redundancy. These include
re-computation [11] as well as double data rate computation [10].

2.2 Fault Attacks on AES

Recent research has focused on two broad categories of fault analysis of AES -
attacks that require correct and faulty ciphertext pairs, and attacks that require
faulty ciphertexts only. The first category principally includes Differential Fault
Analysis(DFA). In DFA, the adversary compares the response of the cipher with
and without fault injections [1], [12], [14], [6]. The other category of fault attacks
on AES require only faulty ciphertexts to retrieve the key, as proposed by Fuhr
et. al. [3]. The attack uses stuck-at fault models and depends on the degree of
control the adversary has on the distribution of the injected fault. A very similar
approach proposed by Ghalaty et. al. is the Differential Fault Intensity Analysis
(DFIA) [4] that uses a biased but slightly less restrictive single byte fault model.
Both these approaches make several key hypotheses on the affected state bytes
in order to retrieve a hypothetical value whose distribution is strongly biased.

Our proposed attack uses a biased fault model to attack the time redun-
dancy countermeasure for AES-128 using faulty ciphertexts only. The reason is
that recovering the key using only faulty ciphertexts is widely believed to be
more challenging. However, similar attack procedure using biased fault models
can also be developed for the former scenario since we can always obtain fault
free ciphertext as well. Biased fault models expose a significant vulnerability
of the classical time redundancy countermeasure. Unlike in a uniform fault dis-
tribution, a biased fault distribution implies that the adversary can introduce
the same fault in both the normal and the redundant computation cycles with
high probability. This reduces the number of fault injections required per faulty
ciphertext. As in DFIA, our attack achieves the desired fault distribution using
clock glitches at various frequencies.

3 Fault Model and Fault Injection Set Up

In this section, we describe the fault model used for our attack and the fault
injection set up employed to achieve this fault model.

3.1 Fault Model

Depending on the type and method of fault injection, different types of faults
may occur with varying granularity such as single bit upsets, multi bit upsets,
single and multi byte upsets, and diagonal upsets. Some previous works have
considered random effect on one byte, where a single state byte may have changed
to any random value [5], [1], [7], [14]. However, such a fault model has a uniform
distribution. More recent work [4] has demonstrated that single-bit, two-bit,



4 Authors Suppressed Due to Excessive Length

Table 1: Fault Model Description

(a) The Fault Model

Symbol Fault Model

FF Fault Free
SBU Single Bit Upset

SBDBU Single Byte Double Bit Upset
SBTBU Single Byte Triple Bit Upset
SBQBU Single Byte Quadruple Bit Upset

OSB Other Single Byte Faults
MB Multiple Byte Faults

(b) Impact of fault location precision

Fault Model
Faults Possible(n) Faults Possible(n)

(Situation-1) (Situation-2)

SBU 8 128
SBDBU 28 448
SBTBU 56 896
SBQBU 70 1120

OSB 93 744

three-bit and four-bit upsets are achievable using clock glitches, and that one can
control the granularity of fault injection by varying the fault intensity. We have
ourselves verified that such faults can be achieved in hardware implementations
of AES-128 via introduction of clock glitches at varying frequencies (refer 3.2).

For further discussions in this paper , we distinguish between major classes
of faults that covers the entire possible fault state. Table 1a summarizes these
categories. Our experiments have shown that SBU is the most suitable fault
model for our attacks on time-redundant AES implementations. However, we
also present results for SBDBU, SBTBU and SBQBU to show the impact of
fault model granularity on the performance of our attacks. Note that the degree
of control that the attacker has on the fault location impacts the fault models in
terms of the number of possible fault (N) under that fault model. We distinguish
between the following two situations - Situation-1 when the attacker has perfect
control over the faulty byte and Situation-2 when the attacker does not have
control over the faulty byte.

In the case of single byte faults, if k be the number of bit upsets in the
target byte, then the number of possible faults in either scenario is different. In
Situation-1, any k bits of the fixed target byte is affected, so number of possible
faults is

(
8
k

)
. In Situation-2, however k bits of any target byte could be affected, so

number of possible faults is 16
(

8
k

)
, which is 16 times greater than in Situation-1.

Table 1b captures the number of possible faults under various fault models
in both situations. Evidently, precision in terms of fault location restricts the
set of possible faults under a fault model significantly. Note that n is the total
number of faults possible under the fault model.

3.2 Fault Injection Set Up

Figure 2 describes our set up for fault injection in time redundant AES-128.
The set up consists of an FPGA (Spartan-3A XC3S400A), a PC and an

external arbitrary function generator (Tektronix AFG3252). The FPGA has a
DUT (Device Under Test) block, which is a time-redundant AES implementa-
tion. Faults are injected using clock glitches and the fault intensity is controlled
by increasing/decreasing the glitch frequency. The system has two clock signals
- clkslow and clkfast, derived from an external clock signal clkext via a Xilinx
Digital Clock Manager (DCM) module. The clkext is generated by the external



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 5

Fig. 2: Fault Injection Setup

function generator and can take frequency values up to 120 MHz. The clkslow
signal has the same frequency as clkext and is used for fault-free operation of the
DUT. The clkfast signal has a frequency equal to twice the frequency of clkext
and is used to create the glitches for fault injection. The appropriate signal is
fed to the DUT via a MUX. The select line of the MUX is the clksel signal which
is output by the trigger generator and is set to high when clkfast is to be fed
to the DUT. The faulty states of the registers were monitored using Chipscope
Pro 12.3 analyzer.

We injected faults in both the original and redundant rounds of time-redundant
AES-128 by varying the clkext over a wide range of frequencies. Since the Chip-
scope pro 12.3 Analyzer limits the number of observable samples at a given
frequency to 1024, we observed 512 samples for the original round and 512 sam-
ples for the redundant round. Tables 2a and 2b summarize the fault patterns
obtained in either round. Table 3 summarizes the common frequency ranges
between either round where each type of fault model is predominant.

4 Effectiveness of the Biased Fault Model

In this section, we demonstrate the effectiveness of the biased fault model in
our attack. We quantify the biasness of a given fault model using the variance
of the fault probability distribution. We assume that the set of faults that can
occur under the fault model is given by F = {f1, . . . , fi, . . . , fn}, where n is
the total number of faults possible under the fault model. Let F be a random
variable that denotes the outcome of random occurrence of a single fault under
this fault model. So the probability of occurrence of fault fi is given by pi =
Pr[F = fi]. Evidently, the fault model follows the probability distribution P =
{p1, . . . , pi, . . . , pn}.



6 Authors Suppressed Due to Excessive Length

Table 2: Fault Distribution

(a) Fault Distribution Pattern - Original Round

Fast Clock Frequency
FF SBU SBDBU SBTBU SBQBU OSB MB

(MHz)

125.0 512 0 0 0 0 0 0

125.1 503 9 0 0 0 0 0

125.2 489 22 1 0 0 0 0

125.3 456 50 6 0 0 0 0

125.4 425 59 22 6 0 0 0

125.5 396 45 43 28 0 0 0

125.6 354 34 112 32 0 0 0

125.7 303 23 101 85 0 0 0

125.8 260 11 55 86 0 0 0

125.9 208 5 46 147 6 0 0

126.0 176 1 39 228 68 0 0

126.1 143 0 18 211 136 4 0

126.2 115 0 10 94 178 15 0

126.3 101 0 8 95 251 49 8

126.4 65 0 9 45 232 141 20

126.5 32 0 5 16 131 187 141

126.6 13 0 3 8 98 101 289

126.7 5 0 1 4 32 112 358

126.8 0 0 1 2 5 105 399

126.9 0 0 1 2 3 88 421

127.0 0 0 0 1 2 33 476

127.1 0 0 0 0 1 12 499

127.2 0 0 0 0 0 0 512

127.3 0 0 0 0 0 0 512

127.4 0 0 0 0 0 0 512

127.5 0 0 0 0 0 0 512

(b) Fault Distribution Pattern - Redundant round

Fast Clock Frequency
FF SBU SBDBU SBTBU SBQBU OSB MB

(MHz)

125.0 512 0 0 0 0 0 0

125.1 512 0 0 0 0 0 0

125.2 507 5 0 0 0 0 0

125.3 479 32 1 0 0 0 0

125.4 456 50 8 4 0 0 0

125.5 416 63 29 4 0 0 0

125.6 375 41 67 29 0 0 0

125.7 345 29 120 32 0 0 0

125.8 303 23 158 28 0 0 0

125.9 255 11 121 123 2 0 0

126.0 215 3 51 251 2 0 0

126.1 192 1 39 214 66 0 0

126.2 131 0 11 187 177 25 0

126.3 105 0 10 104 278 15 0

126.4 87 0 8 64 231 98 24

126.5 50 0 8 46 157 162 90

126.6 27 0 5 16 113 125 226

126.7 21 0 4 10 98 118 261

126.8 13 0 3 6 50 103 337

126.9 7 0 3 5 21 107 369

127.0 3 0 3 2 12 91 401

127.1 2 0 1 1 8 44 456

127.2 0 0 0 1 7 17 487

127.3 0 0 0 0 3 8 501

127.4 0 0 0 0 1 3 508

127.5 0 0 0 0 0 0 512

Table 3: Fault Models and Corresponding Frequency Ranges
Fault Model Frequency Range (Original and Redundant Rounds)

(MHz)

FF < 125.3
SBU 125.3-125.4

SBDBU 125.6-125.7
SBTBU 126.0-126.1
SBQBU 126.3-126.4

OSB 126.5
MB > 127.2

In order to get a faulty ciphertext in time redundant AES, the same fault fi
must occur in both the original and redundant rounds of computation. Let Forg
and Fred be the random variables denoting the outcome of fault injections in
the original and redundant rounds respectively. Since the fault injection in the
original and redundant rounds are independent, we have Pr[Forg = fi, Fred =
fj ] = pipj . We focus on the event where Forg = Fred. Let the probability of this
event be denoted by p̃.

p̃ =

n∑
i=1

Pr[Forg = fi, Fred = fi] =

n∑
i=1

pi
2. (1)

Evidently, this is also the probability of leakage of faulty ciphertexts. Our
objective is to find if there is a correlation between the biased nature of the fault



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 7

Table 4: Notations Used
P Plaintext

C Fault-free ciphertext

fi A specific fault instance

n The number of possible faults under the fault model

NC The total number of faulty ciphertexts obtained
(excluding random ciphertexts generated by the countermeasure)

NF The total number of fault injections

C′fi The faulty ciphertext under fault fi
r A round of AES

k A key hypothesis

K The correct key

Sr
K The fault free cipher state in round r for key K

S′rk,fi A guess for the faulty cipher state before the SubBytes of round r under fault fi and key hypothesis k

distribution and this probability of fault co-occurrence. Given the fault model F
and the corresponding probability distribution P, let V ar denote that variance
of P. From the standard definition of variance of a probability distribution is

given by V ar =
∑n
i=1 pi

2

n − 1
n2 .

Note that the value of V ar is 0 for a uniform fault distribution and increases
with increase in non-uniformity. This justifies using the variance of the fault
probability distribution as a measure for quantifying the biasness of the fault
model. Finally, we have the following relation.

p̃ = nV ar +
1

n
(2)

Thus, by using a biased fault model, one could greatly enhance the probability
of occurrence of identical faults in consecutive rounds of computation in a time
redundant circuit. The significance of this is as follows:

– If the countermeasure suppresses the ciphertext on fault detection, a biased
fault model will warrant much fewer fault injections to get a faulty cipher-
text.

– If the countermeasure produces a random ciphertext on fault detection that
does not contribute to hypothesis testing, a biased fault model will require
fewer ciphertexts and hence fewer fault injections.

In either scenario, the countermeasure is weakened.

5 Description of the Attack

In this section, we describe the detailed procedure of the performed attacks on
a time redundant version of AES. The attack procedure introduces the fault
into either round 8 or round 9 of AES, and exploits the biased nature of the
introduced fault to decipher the key.

Please refer to Table 4 for the notations used for describing the attack pro-
cedure. Note that our fault model for the attack only comprises SBU, SBDBU,
SBTBU and SBQBU (refer Table 1a), i.e, all the fault models are single byte
fault models.



8 Authors Suppressed Due to Excessive Length

Fig. 3: Attack Steps

5.1 General Attack Procedure

We now present the general steps of the attack, irrespective of the round in
which the fault is introduced. A more round-specific treatment of the attack
is presented following the general discussion. Table 4 summarizes the notations
used in describing the attack procedure. The steps are also elucidated in Figure
3.

Step 1: In this step the adversary induces faults fi and fj in both the normal
and redundant computation of the target round r. However, the adversary
can get the desired faulty ciphertext C ′fi only if fi and fj are identical;
otherwise the ciphertext is suppressed. Note that alternatively, if the coun-
termeasure produces random ciphertexts on fault detection instead of sup-
pressing, the attack procedure does not change. The random ciphertext can-
not distinguish between correct and incorrect key hypotheses and so, does
not contribute to key hypothesis testing. This only increases the number of
fault injections required to recover the key, as in the case of suppression. For
the purpose of a general treatment that encompasses both the scenarios, we
consider NC to be the number of non-random faulty ciphertexts and NF to
be the overall number of fault injections.

Step 2: Once the adversary collects the value of faulty ciphertext C ′fi , he can
compute the value of faulty state S′rk,fi under key hypothesis k. He com-
putes this value for every possible key hypothesis k.(Note that it is sufficient
to hypothesize only those bytes of k that affect the faulty byte of S′rk,fi
since our fault model allows only single byte faults). After doing this for
several collected ciphertexts, the adversary uses a distinguisher to identify
the correct key hypothesis.

Step-3: The adversary chooses the key hypothesis k that minimizes/maximizes
the appropriate distinguisher function for the chosen fault model. A detailed
description of the distinguisher functions is presented in 5.2. If no satisfactory



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 9

key guess can be made, NC is to be increased and the test repeated. Note
that in time redundant AES with suppression, the number of fault injections
NF is greater than NC as not all fault injections yield a faulty ciphertext.

5.2 Distinguisher Functions

Distinguisher functions are used by the adversary to decide on the correct key
byte(s) by selecting the key hypothesis that corresponds to the expected bias in
the faulty state. For our attacks, we use two well known distinguisher functions
- Hamming Distance [4] and Squared Euclidean Imbalance [3, 13]. Equations 3
and 4 describe these functions, with k as the key hypothesis and b as the affected
byte of the AES state.

H(k) =

NC∑
i=1

i−1∑
j=1

HD(S
′r
k,fi

, S
′r
k,fj

) (3)

S(k) =
255∑
δ=1

(
#{b | S′rk,fi [b] = δ}

NC
−

1

256
)
2

(4)

5.3 The Attack on Time Redundant AES-128

We describe the fault attack procedure where the faults are introduced in rounds
8 and 9 of AES, and the choice of distinguisher function is made accordingly.

Attack on the 8th round

Fault Location: The fault fi is injected just after the ante-penultimate Ad-
dRoundKey operation of the AES, modifying a random byte b of S8

K [3].
The injection occurs in both the original and redundant rounds of compu-
tation.

Attack Procedure: Equation 6 summarizes the relation between the faulty
ciphertext and the faulty state. The adversary can hypothesize on 4 bytes of
K10 and one byte of K9 to get the corresponding states and then use the SEI
distinguisher to identify the correct key hypothesis, because the Hamming
Distance is found to require more faulty ciphertexts in this case to arrive at
the key hypothesis.

Attack Complexity: The attack requires 232 key hypotheses for recovering 4
bytes of the key [3], and a total of 4 such sets for recovering the entire key,
leading to an overall requirement of 4 × 232 = 234 hypotheses. Once again,
time redundancy demands that the actual number of attacks be greater than
the required number of faulty ciphertexts.

S
′9
K,fi

= SB
−1

(SR
−1

(C
′
fi
⊕K10)) (5)

S
′8
K,fi

= SB
−1

(SR
−1

((MC
−1

((SB
−1

(SR
−1

(C
′
fi
⊕K10))⊕K9)))) (6)



10 Authors Suppressed Due to Excessive Length

Attack on the 9th round

Fault Location: The fault fi is injected just after the penultimate AddRound-
Key operation of the AES, modifying a random byte b of S9

K [3]. The
injection occurs in both the original and redundant rounds of computation.

Attack Procedure: Since the last round involves no MixColumns operation,
we have Equation 7. The adversary collects several faulty ciphertexts C ′1, . . . ,
C ′N on the same P and hypothesizes on one byte of the key to obtain 256
guesses of the faulty state S′9k,fi - one for each key hypothesis k. This is
followed by the computation of H(k) to identify the correct key hypothesis.
It should be noted that the SEI distinguisher is useless in this context, as the
distance to the uniform distribution will be the same for each hypothesis [3].

Attack Complexity: The attack requires 256 key hypotheses for recovering
each byte of the key.

S
′9
K,fi

= SB
−1

(SR
−1

(C
′
fi
⊕K10)) (7)

6 Simulated Results

In this section, we present results of simulations of attacks on AES-128 with
time-redundancy countermeasure. The attack simulations were carried out on a
software implementation of the time-redundant AES-128.

We divide the simulation into two major halves. In the first half, we assume
the same fault for the original and redundant rounds so that each fault injection
gives us a faulty ciphertext, i.e., NC is same as NF . Our aim here is to estimate
the number of faulty ciphertexts required to recover the full key under different
fault models. In the second half, we vary the probability distribution for each
fault model to confirm the correlation of the bias with the number of fault
injections required per faulty ciphertext, as described by Equation 2. Here, NC

is less than NF as the suppressions are simulated.

6.1 Simulation: Part-1

In this part of the simulation, we assume identical faults in both the original
and redundant computation rounds and aim to estimate the average number of
faulty ciphertexts required to recover the entire key.

In the simulation, a byte of the state at the desired attack point is chosen at
random and then fault is introduced into a certain number of bits belonging to
that byte, varying from 1 to 4. Note that these bits are also chosen at random.We
simulate the attacks in rounds 8 and 9 respectively. In each case, the appropriate
distinguisher function is used to choose the key hypothesis. Table 5 summarizes
the number of faulty ciphertexts required for each fault model to guess the entire
128-bit key with 99% accuracy for the attacks on rounds 8 and 9.



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 11

Table 5: Number Of Faulty Ciphertexts Required To Guess the Entire Key With 99% Probability

Round Fault Model NC

8

SBU 320-340
SBDBU 580-600
SBTBU 1000-1040
SBQBU 1900-2000

9

SBU 288-320
SBDBU 608-640
SBTBU 832-880
SBQBU 1360-1440

6.2 Simulation: Part-2

In the second half of the simulation, we varied the degree of bias for each fault
model by controlling the variance of the fault probability distribution for each
model and observed the average number of fault injections required per faulty
ciphertext, computed over a set of 100 ciphertexts. In this experiment, the as-
sumption was that the countermeasure suppresses the ciphertext on fault injec-
tion. Our experiment considered two distinct scenarios, in which the adversary
has perfect and no control respectively over the target byte in which the fault is
to be induced. For the first scenario, the fault was injected only in the fixed tar-
get byte, while in second scenario, the target byte was randomly chosen. In either
scenario, we simulated the fault probability variance using a normal distribution
with mean 1/n and the desired variance, where n is the total number of faults
achievable under the corresponding fault model. Figures 4a and 4b summarize
the simulation observations over a wide range of fault distribution variances, in
both scenarios. These observations show that with increase in bias of the fault
distribution, the number of fault injections that are required per faulty cipher-
text drops rapidly. Thus, using a fault model with high variance indeed weakens
the time redundancy countermeasure.

We also simulated another experiment with the same fault model, but with
the assumption that the countermeasure produces a random ciphertext instead
of suppressing it. Figure 4c shows, for the attack on round 9 where the adver-
sary has perfect control over the target byte, how the required number of fault
injections varies with the variance of the probability distribution. Clearly, even
in this scenario, the total number of fault injections decreases with increase in
the variance of the fault probability distribution.

7 Experimental Results

In this experiment, we evaluate the proposed attack on a time-redundant hard-
ware implementation of AES on Spartan-3A FPGA . The implementation is a
register-transfer level Verilog definition of AES with each round duplicated by
a re-computation round that helps achieve time redundancy. Thus a total of
20 rounds of computation are necessary. The plaintext and key are randomly



12 Authors Suppressed Due to Excessive Length

Fig. 4: Number of Fault Attacks per Faulty Ciphertext vs Variance of Fault Probability Distribution

(a) Adversary has perfect control over target byte

(b) Adversary has no control over target byte

(c) Countermeasure produces random ciphertexts



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 13

Fig. 5: Modified Fault Injection Setup: adversary has control over affected byte

chosen 128 bit values. If the output of original and redundant round of compu-
tations is different, i.e., if a fault is detected by the countermeasure, the output
is immediately suppressed.

7.1 Experimental Procedure

Attack on Round-8: A total of 4 bytes of the AES state were affected one
by one after the anti-penultimate AddRoundKey operation, since each byte of
the faulty state can be guessed by hypothesizing 4 bytes of the Round 10 key
K10. Again, the external clkfast was increased gradually from 125.3 MHz to
126.4 MHz to achieve the for different fault models. Once sufficient number of
faulty ciphertexts had been collected for each of the 4 bytes, the entire key was
deciphered using the appropriate Squared Euclidean Imbalance computation for
each byte for all the key hypotheses.

Attack on Round-9: Each of the 16 bytes of the AES state were affected one
by one after the penultimate AddRoundKey operation to guess the 16 bytes of
the Round 10 key K10. The external clkfast was increased gradually from 125.3
MHz to 126.4 MHz to achieve the four different fault models. Once sufficient
number of faulty ciphertexts had been collected for each byte, the entire key was
deciphered using the appropriate Hamming Weight computation for each byte
for all the key hypotheses.

7.2 Fault Location Precision

We performed 2 types of attacks - Type-1 in which the adversary has perfect
control over the byte in which the fault is to be introduced and Type-2 in which
the adversary only knows that the fault injected is a single byte fault without
any knowledge of the byte affected. The second type of experiments demands
much lesser control over the actual fault injection, but is weaker as observed
in the experimental results, and demands a significantly larger number of fault
injections. For the first type, only the target byte should be affected by the clock



14 Authors Suppressed Due to Excessive Length

glitch while in the second, the entire AES state should be subjected to the clock
glitch. We describe the set up changes to be made for either scenario in greater
detail. Suppose that the adversary wishes to affect only byte w of the AES state.
She can achieve this precision by modifying the fault injection set up slightly to
allow clkfast to affect only byte w while all other bytes are driven by clkslow.
This ensures that in the event of a clock glitch, only byte w is affected. This is
illustrated in Figure 5. Type-2 is the normal fault injection scenario where all
bytes are allowed to be affected by clkfast.

For each scenario, we repeated the experiment 100 times, with the same
randomly chosen key and the randomly chosen plaintext and took the average
values for the number of faulty ciphertexts as well as the number of fault injec-
tions required to recover the key as well. Table 6 demonstrates the number of
faulty ciphertexts and the number of fault attacks required for recovering the
entire key under the attack on rounds 8 and 9, for both the scenarios where the
adversary has and does not have control over the fault location. The variance of
fault distribution presented for each model was experimentally observed. In both
tables, we compare the experimentally required number of fault injections with
the expected number of fault injections according to the simulation. It is evident
that the experimentally obtained data corroborates the simulation results very
well, thus confirming the hypothesis that with more bias, our proposed fault
attack can break the time redundancy countermeasure with very less number of
fault injections, as compared to unbiased faults.

Table 6: Experimental Results

Round Fault Model
Fault Variance

NC
NF (simulation) NF (experimental)

Type-1 Type-2 Type-1 Type-2 Type-1 Type-2

8

SBU 9.5 × 10−2 3.6 × 10−3 304.75 340.48 647.52 387.67 687.91
SBDBU 1.4 × 10−2 9.2 × 10−4 625.12 1456.25 1506.25 1448.45 1652.30
SBTBU 9.7 × 10−3 4.9 × 10−4 1020.49 1815.60 2315.40 1974.86 2395.83
SBQBU 3.2 × 10−3 5.9 × 10−5 1878.55 7868.82 28038.54 8003.14 30201.41

9

SBU 9.2 × 10−2 3.5 × 10−3 304.24 385.88 603.11 387.98 632.71
SBDBU 8.8 × 10−2 7.9 × 10−4 624.65 641.18 1487.36 647.82 1556.69
SBTBU 8.1 × 10−2 6.7 × 10−4 832.32 873.56 2054.00 878.23 2489.25
SBQBU 7.5 × 10−2 3.5 × 10−5 1328.22 1788.84 17239.10 1809.25 20145.66

8 Conclusions

This paper presents the first successful practical fault attack on the time re-
dundancy countermeasure for AES-128 using biased fault models. The proposed
attack requires neither precise fault injection techniques nor strong adversar-
ial powers. The attack involves fault injection in either round 8 or round 9 of
time redundant AES-128 using clock glitches. Our attack has been successfully
demonstrated on simulated data as well as on 128-bit time redundant AES im-
plemented on Xilinx Spartan-3A FPGA. The paper also develops a scheme to



A Biased Fault Attack on the Time Redundancy Countermeasure for AES 15

show the effectiveness of a biased fault model in the analysis of the time redun-
dancy countermeasure. We conclude that the usage of the countermeasures in
secure systems based on uniform fault distribution should be reconsidered in the
presence of biased fault models. Our future work is to apply our proposed attack
to the hardware redundancy countermeasure.

References

1. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Advances in Cryptology-CRYPTO’97, pp. 513–525. Springer (1997)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Advances in Cryptology-EUROCRYPT’97. pp.
37–51. Springer (1997)

3. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on aes with faulty
ciphertexts only. In: Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013
Workshop on. pp. 108–118. IEEE (2013)

4. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity anal-
ysis

5. Hemme, L.: A differential fault attack against early rounds of (triple-) des. In: Cryp-
tographic Hardware and Embedded Systems-CHES 2004, pp. 254–267. Springer
(2004)

6. Kim, C.H.: Differential fault analysis against aes-192 and aes-256 with minimal
faults. In: Fault Diagnosis and Tolerance in Cryptography (FDTC), 2010 Workshop
on. pp. 3–9. IEEE (2010)

7. Kim, C.H.: Improved differential fault analysis on aes key schedule. Information
Forensics and Security, IEEE Transactions on 7(1), 41–50 (2012)

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in
Cryptology-CRYPTO’99. pp. 388–397. Springer (1999)

9. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Cryptographic Hardware and Embedded Systems-CHES
2010, pp. 320–334. Springer (2010)

10. Maistri, P., Leveugle, R.: Double-data-rate computation as a countermeasure
against fault analysis. IEEE Transactions on Computers 57(11), 1528–1539 (2008)

11. Malkin, T.G., Standaert, F.X., Yung, M.: A comparative cost/security analysis of
fault attack countermeasures. In: Fault Diagnosis and Tolerance in Cryptography,
pp. 159–172. Springer (2006)

12. Piret, G., Quisquater, J.J.: A differential fault attack technique against spn struc-
tures, with application to the aes and khazad. In: Cryptographic Hardware and
Embedded Systems-CHES 2003, pp. 77–88. Springer (2003)

13. Rivain, M.: Differential fault analysis on des middle rounds. In: Cryptographic
Hardware and Embedded Systems-CHES 2009, pp. 457–469. Springer (2009)

14. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Information Security Theory and Prac-
tice. Security and Privacy of Mobile Devices in Wireless Communication, pp. 224–
233. Springer (2011)


	Lecture Notes in Computer Science

