
Differential Fault Intensity Analysis on
PRESENT and LED Block Ciphers

Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Bradley Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

{farhady,bilgiday,schaum}@vt.edu

Abstract. Differential Fault Intensity Analysis (DFIA) is a recently
introduced fault analysis technique. This technique is based on the ob-
servation that faults are biased and thus are non-uniformly distributed
over the cipher state variables. The adversary uses the fault bias as a
source of leakage by controlling the intensity of fault injection. DFIA
exploits statistical analysis to correlate the secret key to the biased fault
behavior. In this work, we show a DFIA attack on two lightweight block
ciphers: PRESENT and LED. For each algorithm, our research analyzes
the efficiency of DFIA on a round-serial implementation and on a nibble-
serial implementation.We show that all algorithms and all implementa-
tion variants can be broken with 10 to 36 faults, depending on the case.
We also analyze the factors that affect the convergence of DFIA. We
show that there is a trade-off between the number of required plaintexts,
and the resolution of the fault-injection equipment. Thus, an adversary
with lower-quality fault-injection equipment may still be as effective as
an adversary with high-quality fault-injection equipment, simply by us-
ing additional encryptions. This confirms that DFIA is effective against
a range of algorithms using a range of fault injection techniques.

Keywords: Differential Attack, Fault Intensity, Light-weight Block Ci-
pher, PRESENT, LED

1 Introduction

Nowadays, lightweight cryptographic primitives are recommended to be used
to secure various resource-constrained systems such as RFID tags and sensor
networks [1] [2]. The security of a cryptographic primitive relies on both its
algorithmic features and on its physical implementation.

Physical attacks are divided into two groups. Side Channel Attacks retrieve
the secret key by using statistical tests on the information leaked from the crypto-
graphic device during its execution [3]. Fault attacks, first, intentionally disturb
a cryptographic device by means of fault injection to induce errors in the out-
put of the device. Then, they exploit the erroneous outputs to mathematically
reverse-engineer the secret key [4].

2 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Differential Fault Intensity Analysis (DFIA) is a recently introduced fault
analysis technique [5]. In DFIA, the attacker injects faults by means of inten-
tional variation of the fault intensity. Using this fault injection technique, he
induces biased faults in the intermediate state of the cryptographic algorithm.
Under the biased fault model, a gradual change in the fault intensity will cause a
small change in the faulty state variable. Using the faulty ciphertext, the attacker
computes the key-dependent secret state variable under each key hypothesis. Fi-
nally, he performs statistical tests on each of the computed state variables and
selects the key guess that is most likely under the biased fault model. Due to
the non-linear transformations of the cipher, the correct key hypothesis shows
only small changes on the variable,while the wrong key guesses show a random
behavior. This attack combines the principles of Differential Power Analysis and
fault injection.

In this paper, we demonstrate a DFIA attack on two lightweight crypto-
graphic algorithms: PRESENT [6] and LED [7]. In contrast to AES, PRESENT
and LED are nibble-oriented (4-bit). This makes the observation and exploitation
of biased faults more difficult. We therefore investigate the feasibility of DFIA
on both nibble-serial and round-serial implementations of PRESENT and LED.
We evaluate the practicality of the biased fault model and the attack strategies
on both nibble-serial and round-serial implementations of the algorithms.

Our results show that a single plaintext and 10 fault injections are sufficient
to extract the key of a nibble-serial PRESENT-80 design. We also show that 12
fault injections are sufficient to extract the key of a round-serial PRESENT-80
design. Besides a DFIA on PRESENT-80, the paper also provides the attack
results for PRESENT-128, LED-80, and LED-128. We confirm that all these
designs can be broken.

We also demonstrate that DFIA [5] can be easily extended over multiple
plaintexts, and that this increases the efficiency of the attack in narrowing down
the key search space. We show that using multiple plaintexts can compensate for
the low-resolution fault injection equipments. Therefore, DFIA can still retrieve
the correct key efficiently, even if the attacker is not in possession of a high-
quality fault injection tool.

The paper is organized as follows. Section 2 describes the DFIA and its
fault model requirements. In this section, we also explain the PRESENT and
LED algorithms and the nibble-serial and round-serial implementations of these
algorithms. Section 3 explains the DFIA attack procedure on the PRESENT
and LED algorithms. Section 4 shows the required number of fault injections
for a DFIA attack on the PRESENT and LED. In this section, we also show
the efficiency of the extended version of the DFIA. Section 5 covers the previous
work that relies on fault bias. Section 6 concludes the paper.

2 Background and Notation

This section explains the principles of the DFIA method. We will first explain
the concept of biased fault and an easy way to control it.

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 3

Table 1. Symbols of DFIA Attack Procedure

P Plaintext

Q Total number of injected faults with different intensities

q A specific fault intensity

C′q Faulty ciphertext under fault intensity q

S Correct state

k Key hypothesis

S′k,q,P Faulty state under hypothesis K = k, fault q, S′k,q,P = f(C′q, k) and input P

2.1 Fault Model

The fault model is a combination of three factors. These factors are fault location,
fault timing and fault type. Fault location and fault timing define the spatial
and temporal location of the fault in a hardware circuit, respectively. The fault
type describes the behavior of the injected fault, and can be stuck-at, set-reset,
random bit-flip, or biased fault respectively. Throughout this paper, we refer to
following terms and definitions:

– Fault Intensity: Fault intensity is the strength by which a circuit is pushed
outside of its nominal operating conditions with the intent of inducing a
fault. For example, when faults are introduced using clock glitches, then the
fault intensity corresponds to the shortened clock cycle that is obtained as
a result of the glitches.

– Fault Sensitivity: The fault sensitivity is the fault intensity at which a hard-
ware circuit reflects faulty behavior [8]. For example, when faults are injected
by means of clock glitches, then fault sensitivity generally corresponds to the
critical path of the circuit.

– Biased Fault: A biased fault is the incremental fault behavior obtained as
a result of gradual increase in fault intensity. For DFIA, we are especially
interested in using minimal fault bias (e.g. changes of one or two bits in a
state variable), although other authors have shown that any fault bias is a
source of leakage [9].

One of the cheapest and most convenient methods of injecting biased faults
into a hardware device is clock glitching. In this method, the attacker creates
biased faults via injecting glitches into the clock signal of the device. To make
a circuit fail its timing constraints,the attacker gradually increases the fault
intensity by decreasing the clock period via glitch injection. As a result, he can
obtain biased faults because of the existing non-uniformity in the path delays of
the circuit.

2.2 Differential Fault Intensity Analysis using Multiple Plaintexts

This section summarizes Differential Fault Intensity Analysis. Algorithm 1 de-
scribes the attack procedure, and Table 1 lists the symbols used in this paper.

4 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Algorithm 1: DFIA Attack Procedure using Multiple Plaintext

Assume Cryptographic Algorithm, Fault Injection Tool ;
Result Correct Key Guess ;
foreach Plaintext P do

foreach Faultintensity q, 1 ≤ q ≤ Q do
Obtain faulty ciphertext C′q;
foreach Key Hypothesis k do

Compute faulty state hypothesis S′k,q,P = f(C′q, k);

//Post-processing phase ;
foreach Key Hypothesis k do

Calculate ρk =
∑

P

∑Q
n=1

∑n−1
m=1HD(S

′
k,n,P , S

′
k,m,P);

K = min ρk;

DFIA starts by applying a fault intensity q into an intermediate value S. The at-
tacker next observes the faulty ciphertext C ′q, and derives the faulty intermediate
value S′k,q,P = f(C ′q, k) under a key hypothesis k. The attacker repeats these two
steps for Q different fault intensities by gradually increasing the fault intensity
each time. In the post-processing step, for each key hypothesis, he computes the
cumulative Hamming Distance among all faulty intermediate values. Finally, the
attacker selects the key hypothesis that corresponds to the minimum cumulative
Hamming Distance. The reason of looking for minimum is that for the correct
key hypothesis, the cumulative Hamming Distance is correlated with the fault
intensity, and thus, it is minimal. A wrong key hypothesis infers a larger, ran-
dom cumulative Hamming Distance due to the non-linear diffusion and confusion
properties of the attacked cipher. Hence, the correct key results in the minimum
cumulative Hamming Distance as long as the applied fault intensities induce
biased faults. Ghalaty et al. [5] show this behavior on AES for different biased
fault injection scenarios. They draw two conclusions. First, DFIA converges for
any given set of biased faults. Second, DFIA converges faster for strongly-biased
faults (e.g. 1-bit faults) than it does for weakly-biased faults (e.g. 4-bit faults).

The original DFIA is applied using a single plaintext value [5]. However,
DFIA can be easily extended to multiple plaintexts, by repeating the above
steps for each plaintext, and by accumulating the resulting Hamming Distance
values for each key hypothesis. Again, the global minimum will be obtained only
under the correct key hypothesis. In this paper, we make use of this feature, and
we show that it can be used to improve the efficiency of DFIA when few biased
faults are available, or when the fault injection equipment has limited precision.

2.3 PRESENT Block Cipher

We make a brief overview of PRESENT and our implementations of it. PRESENT
is a lightweight block cipher that was recently standardized by IEEE [6]. It uses
an SP-network structure, and loosely follows the structure of AES, with the fol-

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 5

Fig. 1. Nibble-serial Implementation of PRESENT

lowing important differences. It has 31 rounds, and uses a block-length of 64
bits. It uses a selectable key size of 80 bit or 128 bit, and both versions are dis-
tinguished through their name (PRESENT-80 or PRESENT-128). Each round
consists of three steps, including a roundkey addition layer, a nonlinear substitu-
tion layer with sixteen 4-bit Sbox, and a permutation layer. After the last round,
an additional post-whitening step is included by adding a final roundkey.

The 64-bit roundkey is extracted from the upper part of the key register, and
each round the key is updated with a key-size dependent key scheduling algo-
rithm. The key schedule for PRESENT-80 is shown in Equations (1a) through
(1c). The key schedule for PRESENT-128 is slightly more complex, and can be
consulted in [6].

K79K78....K0 = K18K17....K19 (1a)

K79K78K77K76 = Sbox[K79K78K77K76] (1b)

K19K18K17K16K15 = K19K18K17K16K15 ⊕ round counter (1c)

In this work, we studied both a round-serial and a nibble-serial implementa-
tion. The reason for this is to show the feasibility of DFIA on different imple-
mentations of the same cipher. The round-serial implementation computes an
entire round of a complete block in a single clock cycle. This implementation is
straightforward and follows the design of the original PRESENT paper [6]. We
also developed a nibble-serial design, as shown in Fig. 1. In this case, one round
for a single nibble (4 bits) from a block is computed in a single clock cycle, and
this requires sequentialization of the round operations. This is easy to achieve
for the roundkey addition and the Sbox substitution. For the permutation layer,
we make use of the property that PRESENT’s permutation is a 4-bit by 16-bit
transpose operation: 4 bits of the permutation output are taken from a column of

6 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 2. Nibble-serial Implementation of LED

4-bits of an input block, when the block is arranged as a 4-bit by 16-bit matrix.
In Fig. 1, we implement the permutation using serial/parallel FIFO modules,
which consist of four 4-bit FIFO’s that either operate as a single 16-bit FIFO
(serial mode) or else as four parallel 4-bit FIFO’s (parallel mode). A complete
block is stored in four serial/parallel FIFOs. Using two such structures, which
store either the odd or even round states, a compact nibble-serial version of
PRESENT is obtained.

Of particular note for our fault analysis is the critical path in these structures.
The critical path runs through the Sbox and roundkey addition operations. For
the round-serial design, all Sbox operations will be in the critical path in a given
clock cycle. For the nibble-serial design, on the other hand, only a single Sbox
operation will be in the critical path in a given clock cycle.

2.4 LED Block Cipher

The Light Encryption Device (LED) is a compact block cipher that was devel-
oped after PRESENT, and that integrates further insight into the lightweight
cipher design process [7]. This block cipher, too, is an SPN structure, with a
64-bit block size. It supports two different key sizes, 64-bit or 128-bit, and the
notation LED-64 and LED-128 is used to distinguish these cases. LED-64 has
8 steps of 4 rounds each, for a total of 32 rounds. In between steps, roundkeys
are added. Each of the rounds includes operations similar to AES (AddCon-
stants(AC), SubCells(Sbox), ShiftRows(SR), MixColumnSerial(MC)), but each
of these steps is specifically optimized towards lightweight encryption. LED or-
ganizes the state as a four by four matrix of nibbles, and the round operations
operate on these nibbles.

The LED cipher does not use a key scheduling algorithm. Rather, it reuses
the same key for every step. In the case of 128-bit key, the key bits are divided
into two groups and each round uses one of them alternatively. LED includes a
post-whitening step with a final addroundkey.

As with PRESENT, we developed a round-serial and a nibble serial version
of LED for DFIA analysis. Fig. 2 shows the architecture of the nibble-serial de-
sign. It follows the design guidelines of the original LED paper [7]. The State

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 7

is organized in a FIFO-like structure of 16 nibbles. The structure can rotate
the first column to compute MixColumnSerial, and it can rotate rows to com-
pute ShiftRows. SubCells and AddRoundKey rotate the entire matrix through
an Sbox and round-key addition respectively. The critical path runs through
the MixColumnSerial. This is true for either the nibble-serial as well as the
round-serial design. Fault injection using glitches will directly affect the vari-
ables computed in the critical path.

2.5 Implementations of the Block Ciphers

We wrote Verilog codes for our block cipher designs, namely, round-serial LED
(LED-rs), nibble-serial LED (LED-ns), round-serial PRESENT (PRE-rs), and
nibble-serial PRESENT (PRE-ns). We choose the key size as 128-bit in our
implementations. We also generated gate-level netlist files for an Altera Cyclone
IV FPGA (60nm Technology). We use these netlists for gate-level simulations,
which are carried out using Modelsim-Altera 10.1d [10] software, to verify our
claims throughout the paper.

3 DFIA Attack on PRESENT and LED

In this section, we explain the DFIA attack on nibble-serial and round-serial
implementations of PRESENT and LED block ciphers. To get the full key, the
attacker must perform DFIA for the last two rounds of PRESENT-80 (i.e. round
30 and 31) and the last three rounds of PRESENT-128 [11]. The LED cipher
has a very simple key scheduling method, and thus, we can retrieve the key by
attacking the last round of LED-64. For LED-128, we have to attack the last
two rounds to retrieve the key.

DFIA has two phases: Injecting biased faults into the intermediate state of the
block cipher and post-processing the faulty ciphertexts to retrieve the key. The
biased fault injection is nibble-wise (i.e., 4-bit) for nibble-serial implementations,
while it is state-wise (i.e., 64-bit) for round-serial implementations. Regardless
of DFIA on round-serial or nibble-serial designs, the post-processing is always
applied on a single key nibble at a time.

3.1 Biased Fault Injection in PRESENT and LED

The proposed DFIA attacks build upon injecting biased faults in the inputs of
Sbox blocks. One can use a clock glitch injection method such as in Figure 3(a)
for this purpose. This method generates an input clock signal for the circuit as a
combination of two clock signals, namely, glitch clock (clk g) and nominal clock
(clk o). As it is seen in Figure 3(b), we inject glitches in the clk o via an enable
signal (g en). To inject a biased fault in the input of an Sbox, we set the g en
signal just before the clock cycle, in which the Sbox is employed. Such a glitch
injection makes some timing paths fail and causes a biased fault in the input of

8 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 3. (a)Block Diagram of Experimental Setup (b)Timing Diagram of Experimental
Setup

(a) Nibble-serial PRESENT (b) Round-serial PRESENT

(c) Nibble-serial LED (d) Round-serial LED

Fig. 4. Biased Fault in the PRESENT and LED Implementations

the Sbox. We control the fault intensity by increasing/decreasing the frequency
of the clk g signal.

The target block of DFIA is different for each implementation. For LED-
ns, the target block is MixColumnSerial (MC) logic. We create biased faults
in the outputs of the MC logic by violating its timing paths. Then, the biased
faults are transferred to the inputs of Sbox blocks via linear AddConstants (AC)
layer. The target block of PRE-ns is the roundkey addition and substitution
blocks. For LED-rs and PRE-rs the target blocks are the whole round logic of
the corresponding algorithms.

3.2 Biased Faults in PRESENT and LED Exist

In this section, we present a set of experimental results to verify that fault bias is
a feasible fault source. We demonstrated biased faults through gate-level (post-

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 9

(a) (b)

Fig. 5. Biased Fault Injection on State of (a) PRESENT and (b) LED

place-and-route) simulation of the four block cipher implementations. In Fig. 4,
we present the results for Sbox of the four implementations for a single plaintext.

Fig. 4 shows the relationship between the clock glitch width and obtained
faults in the Sbox inputs at the last round of the corresponding implementation.
For each subgraph of Fig. 4, the horizontal axis is the clock glitch width and the
vertical axis is the bit position. We mark a faulty bit position with the symbol
(X) and mark a fault-free position with the symbol (-). In each subgraph of
Fig. 4, we observe a minimal Hamming Distance between two neighbor columns.
This behavior verifies the existence of fault bias in our implementations.

In Fig. 5(a) and Fig. 5(b), we show the number of faulty bits that are induced
in the 64-bit state with respect to the clock glitch width for PRE-rs and LED-
rs, respectively. These two graphs show that the fault bias exists for the 64-bit
state as well. The PRE-rs will fail at higher fault intensity (i.e. at a narrower
glitch width) than LED-rs. The reason is that the critical path of PRE-rs is
shorter compared to the LED-rs. Thus, the attacker needs higher-capability fault
injection tool to inject fault into PRE-rs.

3.3 Post-Processing of DFIA on PRESENT

In this section, we describe the procedure to retrieve the key for PRE-ns and
PRE-rs implementations. To obtain the 80-bit key of PRESENT-80, we first
retrieve the round key of round 31 to get the 64 most significant bits of the key.
Then, to retrieve the remaining key bits, we retrieve the round key of round
30. Similarly, for PRESENT-128, the attacker must retrieve the round keys of
rounds 31, 30, and 29.

We can retrieve each nibble of a round key separately. Therefore, the key re-
trieval procedure for nibble-serial and round-serial implementations is the same.
Following is the procedure to retrieve the 80-bit key for PRESENT-80. We as-

10 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 6. DFIA Steps to Retrieve 4-bit Key of PRESENT

sume that the attacker has already collected the required amount of faulty ci-
phertexts to retrieve the key (using the method in Section 3.1).

The DFIA attack on PRESENT-80 follows Algorithm 1 as explained earlier.
The faulty state variable is computed using Equation 2. By repeating this pro-
cess for all nibbles of round 31, the attacker can retrieve the correct value for
K79K78....K16. In order to retrieve K16K15....K0, the attacker has to process 4
least significant nibbles of round 30 as well.

S′k,C′ = PlayerInv(SboxInv(C ′ ⊕K)) (2)

Fig. 6 shows an example DFIA attack to guess a nibble of a key. In this figure,
the attacker injects four fault intensities: no injection, 1-bit fault injection, 2-
bit fault injection and 3-bit fault injection. In this example, we retrieve one
nibble of the round key with three fault injections. The bottom section of the
bar chart shows the Hamming Distance between the first two intensities. The
candidates for the correct key guess are the key guesses that show the minimum
Hamming Distance, which is the set G1 = {0, 2, 4, 7, 9, 10, 13, 15} after the 1-bit
fault injection. The middle section of the bar chart shows the Hamming Distance
between 1-bit fault injection and 2-bit fault injection. As it is seen, the set of
key candidates for correct key guess reduces to the set G2 = {9, 10, 15} after
the 2-bit fault injection. The top section of the bar chart shows the Hamming
Distance between 2-bit fault injection and 3-bit fault injection. The last fault
injection gives us the unique key guess, which is G3 = {10}.

3.4 Post-processing of DFIA on LED

In this section, we describe the procedure to retrieve the key for LED algorithm
for nibble-serial and round-serial implementations. As the LED uses a very sim-
ple key scheduling method, the key can be retrieved by attacking the last round
of LED-64. For LED-128, the attacker can retrieve the most significant 64-bit of
the key by attacking the round 31. Then, he can retrieve the remaining bits by
attacking the round 30.

The post-processing step of LED is different than the post-processing of
PRESENT because LED includes a MixColumnSerial operation in its last round.

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 11

The MixColumnSerial operation spreads the single faulty nibble in the inter-
mediate state (S) to four nibbles of the faulty ciphertext (C ′). Therefore, the
reconstruction of the hypothesized faulty intermediate state now requires a hy-
pothesis on 16 key bits, which means that we have 216 different hypotheses. We
can solve this problem via a method proposed by Jeong et al. [12]. The solution
relies on peeling off the MixColumnSerial operation of the last round by using
an equivalent ciphertext (C

′∗), and retrieving an equivalent key (K∗) instead of
the actual key (K). The equivalent key and ciphertext satisfy the Equation 3a
and 3b, respectively.

K∗ = MCInv(K) (3a)

C
′∗ = MCInv(C ′) (3b)

As Equation 3b removes the effect of MixColumnSerial operation on C ′, one
faulty nibble in S corresponds to one faulty nibble in C

′∗. Therefore, we can use
the C

′∗ to retrieve each nibble of the K∗ with 4-bit key hypotheses. Using S′ and
C

′∗, we can perform DFIA (Algorithm 1) to retrieve four bits of the K∗ using
Equation 4. By repeating the procedure for 16 nibbles of the C

′∗, we retrieve
all 16 nibbles of the K∗. Then, we apply the MixColumnSerial operation on the
K∗ to retrieve the actual key K.

S
′

= SboxInv(SRInv(C
′∗ ⊕K

′∗)) (4)

The validity of the described solution can be seen from Equations 5a through
5d. The faulty ciphertext C ′ is computed by Equation 5a. Equation 5b is ob-
tained by applying the MixColumnsInverse operation to both sides of Equa-
tion 5a. Using the distributive property of the MixColumnsSerial over the XOR
operation, we obtain Equation 5b. Using Equations 3b and 3a we obtain Equa-
tion 5d.

C ′ = MC(SR(Sbox(S′)))⊕K (5a)

MCInv(C ′) = MCInv(MC(SR(Sbox(S′)))⊕K) (5b)

MCInv(C ′) = MCInv(MC(SR(Sbox(S′))))⊕MCInv(K) (5c)

C
′∗ = SR(Sbox(S′))⊕K∗ (5d)

4 Results

We evaluated the proposed DFIA attacks using gate-level simulation. In our
gate-level simulations, we first generated 50 random plaintexts. Then, for each
of the four implementations, we obtained the ciphertexts for different clock glitch
widths. In this experiment, we gradually decreased the clock glitch width from

12 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Table 2. Required Number of Physical Fault Injections for DFIA Attack on PRESENT
and LED with 100ps Fault Injection Precision

Nibble-serial Round-Serial

PRESENT-80 10 12
PRESENT-128 16 18
LED-64 14 18
LED-128 28 36

4.6ns to 0.6ns with 100ps step size. At the end, we obtained 40 ciphertexts for
each plaintext and each implementation. As can be seen in [13], the selected
step size is a reasonable value. We present the analysis of our results in the
following subsections. We also study the trade-off between glitch resolution and
using multiple plaintexts in DFIA.

4.1 Results of DFIA on PRESENT and LED

Table 2 show the results of DFIA attack on PRESENT and LED implemen-
tations. We present the number of required steps, for each implementation, to
retrieve the whole unique secret key by using a single plaintext.

As it can be seen from Table 2, the number of required fault injections to
retrieve the correct key for nibble-serial and round-serial implementations are
close to each other. Thus, we can conclude that the round-serial and nibble-
serial implementations are equally complex for DFIA. DFIA can attack them
with the same efficiency. Table 2 also shows the effect of the key size on the
number of required fault injections. For example, round-serial LED-128 requires
36 fault injections while round-serial LED-64 requires 18 fault injections.

Compared to the previous fault attacks on PRESENT, we inject fewer faults.
The attack in [11] needs up to 150 faulty ciphertexts to retrieve the unique key.
The attack proposed in [14] require 48 faulty ciphertext to retrieve the last round
key of the algorithm. While the number of required fault injections in the DFIA
attack is smaller compared to the mentioned previous works, we also provide a
practical fault model.

The previous DFA attacks on LED [12], requires a random faulty nibble to
decrease the key search space to 28 candidates. Also, the methodology proposed
in [15] is based on algebraic equations and injects a single fault to reduce the key
search space to 26 ∼ 217 key guesses. The proposed DFIA attack on LED finds
the unique correct key guess using additional fault injections of fault injections.
However, the biased fault model is practical and easy to achieve for the attacker.

4.2 Trade-off between Fault Injection Resolution and Number of
Plaintexts

In this section, we provide the experimental results to verify the efficiency of the
extended version of DFIA. We investigate the relationship between fault injection

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 13

(a) PRESENT (b) LED

Fig. 7. Trade-off Between Fault Injection Resolution and Number of Plaintexts used
for (a)PRESENT and (b)LED

resolution and the number of plaintexts that DFIA needs to retrieve the key. As
our fault injection means is clock glitching, our fault injection resolution is the
minimum increment or decrement in the clock glitch width that we can achieve.
In this experiment, we apply DFIA attacks (Algorithm 1) on our PRE-rs and
LED-ns implementations for different fault injection resolutions, from 20ps to
500ps, and for different number of plaintexts, which ranges from 2 to 50. Then,
we count the number of the key nibbles that DFIA cannot retrieve under a given
fault injection resolution and a given number of plaintexts. We call such nibbles
as unknown nibbles throughout this section.

Fig. 7(a) and Fig. 7(b) present the results for PRE-rs and LED-rs implemen-
tations, respectively. In these figures, the Y axis shows the number of unknown
nibbles out of 16 nibbles and the X axis shows clock glitch resolutions. Each data
line in the graphs corresponds to a different number of applied plaintexts (PTs).
Fig. 7(a) and Fig. 7(b) show two important behaviors for both LED-rs and
PRE-rs. For a given fault injection resolution, using more plaintexts decreases
the number of unknown nibbles. For a fixed number of plaintexts, the number of
unknown nibbles decreases as the fault injection resolution increases (i.e., clock
glitch step size decreases). An adversary can decrease the number of unknown
nibbles either by increasing the fault injection resolution or by increasing the
number of plaintexts (i.e., encryptions). Therefore, we can conclude that there
is a trade-off between the fault injection resolution and the number of required
plaintexts. Due to this trade-off, DFIA can still efficiently retrieve the key when
the fault injection equipment has a low resolution or when few biased faults are
available.

14 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

5 Related Work

Ghalaty et al. [5] have a discussion on the differences of the DFIA attack with
other types of attack such as DFA [4], FSA [8] and DPA [3]. In this section, we
will talk about the previous types of fault attacks that use the concept of biased
fault and explain their differences with DFIA. Although DFIA [5] is not the first
work that utilizes the fault bias as a fault model [9], [16], [17], [11], it is the first
work that defines biased fault just beyond the fault sensitivity.

Lashermes et al. [9] assume a biased fault model and use the concept of
hypothesis test on a distinguisher (i.e. Shannon entropy). However, in order for
their method to converge in a practical time, they need a method to quantify the
characteristic error distribution of the fault injection means. For this purpose,
they need to profile the device under attack for different data sets. On the other
hand, DFIA does not require any profiling phase.

Sakiyama et al. [16] and De Santis et al. [11] apply similar methodology to
AES and PRESENT algorithms. They assume that faults will cause bias in the
intermediate values, for example because of stuck-at faults in the intermediate
value. In contrast, DFIA assumes that the fault itself is biased: The faulty inter-
mediate values must differ in a small number of bits from the non-faulty value.
But the faulty intermediate values do not have to be biased.

Jarvinen et al. [18] also propose DFA attack based on biased fault injection
model. However, their method is more similar to the DFA attacks. Their defini-
tion of fault model is also different from DFIA’s fault model. In this paper, the
author defines the biased fault as the fact that the probability of stuck-at-1 or
stuck-at-0 is higher compared to the other one. They assume that based on the
fault injection method, the attacker knows the value of faulty bit and can use
mathematical equation to reverse the faulty ciphertext and get the key.

6 Conclusion

In this paper, we propose a DFIA on round-serial and nibble-serial implementa-
tions of PRESENT and LED. Based on our result, we can retrieve the unique
key guess for each algorithm with a reasonable number of fault injections. Our
method of fault injection is the clock glitching in this paper which is a very
cheap and easy way of attacking for the adversary. We also study the relation
between the number of plaintexts (encryptions) used, and the precision of the
fault injection equipment.

7 Acknowledgment

This research was supported through the National Science Foundation Grant
1441710, Grant 1115839, and through the Semiconductor Research Corporation.

Differential Fault Intensity Analysis on PRESENT and LED Block Ciphers 15

References

1. ISO: Information Technology–Security Techniques–Lightweight Cryptography–
Part 2: Block Ciphers. ISO/IEC 29192-2:2012, International Organization for Stan-
dardization (2012)

2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. Computer
networks 54 (2010) 2787–2805

3. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology (CRYPTO), Springer (1999) 388–397

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Advances in Cryptology (CRYPTO). Springer (1997) 513–525

5. Farhady Ghalaty, N., Yuce, B., Taha, M., Schaumont, P.: Differential Fault Inten-
sity Analysis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy (FDTC), IEEE (2014) 34–43

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-lightweight Block Cipher.
Springer (2007)

7. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Cryptographic Hardware and Embedded Systems–CHES. Springer (2011) 326–341

8. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
Sensitivity Analysis. In: Cryptographic Hardware and Embedded Systems-CHES.
Springer (2010) 320–334

9. Lashermes, R., Reymond, G., Dutertre, J., Fournier, J., Robisson, B., Tria, A.: A
DFA on AES based on the Entropy of Error Distributions. In: 2012 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), IEEE (2012) 34–43

10. Altera Corporation: ModelSim Altera Starter Edition. (Available:www.altera.com)
11. De Santis, F., Guillen, O., Sakic, E., Sigl, G.: Ciphertext-Only Fault Attacks

on PRESENT. Third International Workshop on Lightweight Cryptography for
Security and Privacy (2014) 84–105

12. Jeong, K., Lee, C.: Differential Fault Analysis on Block Cipher LED-64. In: Future
Information Technology, Application, and Service. Springer (2012) 747–755

13. Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An On-chip Glitchy-
clock Generator for Testing Fault Injection Attacks. Journal of Cryptographic
Engineering 1 (2011) 265–270

14. Bagheri, N., Ebrahimpour, R., Ghaedi, N.: New Differential Fault Analysis on
PRESENT. EURASIP Journal on Advances in Signal Processing 2013 (2013)

15. Zhao, X.j., Guo, S., Zhang, F., Wang, T., Shi, Z., Ji, K.: Algebraic Differential
Fault Attacks on LED Using a Single Fault Injection. IACR Cryptology ePrint
Archive 2012 (2012) 347

16. Sakiyama, K., Yang, L., Shigeto, G., Mitsugu, I., Naofumi, H., Takafumi, A.,
Kazuo, O., et al.: Practical DFA Strategy for AES Under Limited-access Con-
ditions (Preprint). 55 (2014)

17. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault Attacks on AES with Faulty
Ciphertexts Only. In: 2013 IEEE Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), IEEE (2013) 108–118

18. Jarvinen, K., Blondeau, C., Page, D., Tunstall, M.: Harnessing Biased Faults in
Attacks on ECC-Based Signature Schemes. In: 2012 IEEE Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), IEEE (2012) 72–82

