
Fault Injection with a new flavor: Memetic
Algorithms make a difference

Stjepan Picek1, Lejla Batina2, Pieter Buzing3 and Domagoj Jakobovic1

1 University of Zagreb, Faculty of Electrical Engineering and Computing,
Zagreb, Croatia

{stjepan.picek, domagoj.jakobovic}@fer.hr
2 Radboud University Nijmegen, The Netherlands

lejla@cs.ru.nl
3 Riscure BV, The Netherlands,

Buzing@riscure.com

Abstract. During recent years we observe an arms race between new
creative methods for inserting effective faults and designing new coun-
termeasures against such threats. Yet, even analyses of an unprotected
smart card pose a problem for an analyst assuming constraints in time
(or consequently, in a feasible number of measurements). In this paper we
present a new kind of algorithm capable of finding faults in the black box
test scenario - memetic algorithm. This algorithm combines the strengths
of the following three algorithms: genetic algorithm, tabu search and local
search. Furthermore, the same algorithm can be used if the goal is simply
a rapid characterization of the search space. We compare our algorithm
with random search and exhaustive search approaches. Experimental re-
sults show that our memetic algorithm is substantially more successful
in both, locating faults and characterizing search space, than the other
known methods. In reaching both goals, our memetic algorithm uses less
than 300 measurements.

Keywords: Fault analysis, Glitches, Smart cards, Memetic Algorithms

1 Introduction

Smart cards and other small pervasive devices such as RFID tags are used daily
by billions of users for applications such as public transportation, Internet bank-
ing, online shopping, etc. The exposure to numerous threats, mainly coming
from the adversary aiming at physical security, have led to this becoming one of
the most actively researched topics by both academia and industry in the past
two decades.

Anderson and Kuhn [1] put some doubt on the claimed tamper-resistance of
smart cards almost two decades ago. This paper was shortly followed by the set
of techniques for tampering with smart cards by Kömmerling and Kuhn [2].

In general, the techniques for tampering can be classified as passive or ac-
tive [3]. In passive techniques some side-channel information is monitored while

2

the card is supposed to work “normally”. An example of these passive tech-
niques is the analysis of power consumption, as introduced by Kocher et al. [4]
or electromagnetic radiation [5]. In the case of active techniques, the device is
not only monitored but also external interferences affect the normal behavior of
the device. An example is Fault Injection (FI) attack. These interferences, the
so-called glitches, can be of different nature: optical (laser pulses) and electrical
glitches (voltage, clock), temperature changes, electromagnetic (EM) radiation,
etc. They are used to cause malfunctioning, resulting in some cases in secret key
recovery. Fault injection techniques by glitching are typically non-invasive tech-
niques, in the sense that the smart card is not physically modified (in contrast
to other invasive techniques that require hardware modifications).

A fault injection attack is considered to be successful if after exposing the
device under attack to a specially crafted external interference, the device shows
an unexpected behavior, which can be exploited by an attacker (e.g. leaking of
sensitive information, bypassing security checks, etc.). However, this external
insertion of signals has to be precisely tuned for the fault injection to succeed.
As an example, a complete characterization of a clock signal glitch requires from
the security analyst to define more than 10 parameters (related to clock signal
voltage levels, time offset of the glitch, etc.).

Finding the correct parameters for a successful FI can be considered as a
search problem where one aims to find, within minimum time, the parameter
configurations which result in a successful fault injection [6]. The search space,
considering all possible combinations of the values of interest for the fault injec-
tion is typically too large to perform an exhaustive search.

Heuristic search algorithms can reduce the search time considerably. In this
paper we investigate the feasibility of genetic algorithms (GAs) in this applica-
tion domain. More specifically, we compare a standard GA with an enhanced
GA called a memetic algorithm (MA), which adds local search iterations to the
process. The motivation behind MA is the fact that GAs are generally good
at exploration of the search space, but can often be improved in terms of the
exploitation aspect.

Apart from introducing a GA framework to the FI domain we also make a
distinction between the aim of finding as many glitches as possible on one hand,
and characterizing the parameter space on the other (with characterization we
consider identifying promising parameter regions). By finding these promising
parameter regions and focusing the search on those values we increase the prob-
ability of the glitch candidates producing a successful glitch.

1.1 Related Work

The concept of fault analysis-based attacks is known in the research commu-
nity for around twenty years. Boneh, DeMillo and Lipton published an attack
on RSA where they exploit hardware faults for cryptanalysis [7,8]. Kömmerling
and Kuhn present an extensive overview of techniques for fault injection and
other tampering techniques and give ideas on how to mitigate some of them [2].
The paper highlights the case of power supply (VCC) fault injection (referred

3

to as glitch attacks) and emphasizes those as the ones most useful in practice.
Aumüller et al. performed one of the first practical works on fault analysis, in
which they describe a real-life scenario of the impact of injecting glitches in the
VCC and clock lines of an IC [9]. They also suggest some countermeasures ap-
plicable in this specific case. Approximately at the same time, Skorobogatov and
Anderson introduce optical (laser) fault injection, where they describe injecting
faults with a laser on a decapsulated IC [10]. This technique is still very success-
ful nowadays for defeating the security of many protected devices, but it is out of
scope for this work. Van Woudenberg et al. describe a real attack scenario for an
Optical Fault Injection attack [11]. The practical problem of setting the parame-
ters for fault injection is introduced in their work and the authors briefly discuss
the lack of methodology to solve it as the main direction they rely on is based on
heuristics. In addition, the paper gives a nice overview of all the practical issues
that arise during a real execution of the FI attacks on actual hardware. Balasch
et al. explore the effects of glitches injected in the clock line of an IC [12]. This
work is very interesting for identifying various effects that a glitch can cause
on real hardware in terms of defining all possible outcomes of a successful fault
injection. However, it has to be noted that current smart cards usually run on
an internal clock which makes this FI technique infeasible. The work of Boix
Carpi et al. deals with a similar problem to ours but the authors take a dif-
ferent approach [6]. They use a self-adapting search algorithm that shows some
potential when considering only two parameters, glitch shape and length. As
a future direction they mention one could try genetic algorithms. Additionally,
the same authors present preliminary work with genetic algorithms in [13]. As
an extension to this work, we consider three parameters and take the analysis
to the next level by unleashing the full power of evolutionary computation in
combination with other search techniques.

1.2 Our Contribution

There are two main contributions in this paper. As far as we know, we are the
first to use a hybrid (memetic) algorithm [14] to look for successful glitches. Our
memetic algorithm combines techniques from genetic algorithms, local search
and tabu search. The second contribution is that we use the same algorithm not
only to find faults, but also for the characterization of the search space with a
minimal number of measurements.

The remainder of this paper is organized as follows: in Section 2 we give our
problem statement and relevant properties of the search space as well as smart
card details. In Section 3 we present description of algorithms we use, and in
Section 4 we give experimental results and a discussion. Finally, in Section 5 we
offer conclusions and future work directions.

4

2 Preliminaries

In this section we start with a short introduction to the smart card used. Af-
terwards, we give information about possible verdict classes and search space
parameters.

2.1 Smart Card Details

In all our experiments we use smart cards that are based on ATMega163+24C256
IC, realized in CMOS technology. Those cards do not deploy any side-channel
or fault injection countermeasure. All processing on the card is performed in
software, and cards are running on an external 1 MHz clock frequency.

For the experimental purposes, we attack a vulnerable PIN authentication
mechanism. The PIN authentication mechanism is implemented as follows:

for (i = 0; i < 4; i++)

{

if (pin[i] == input[i])

ok_digits++;

}

if (ok_digits == 4) //LOCATION FOR ATTACK

respond_code(0x00, SW_NO_ERROR_msb, SW_NO_ERROR_lsb); //PIN IS CORRECT

else

respond_code(0x00, 0x69, 0x85); //PIN IS WRONG

In the above code we want to glitch the target (smart card) while it is execut-
ing the second if-statement. However, we want to emphasize that our approach
makes no assumptions on the software that runs on the smart card. First of all,
we regard the target as a black box and only hypothesize that there exists a
weakness in the implementation and that we can roughly estimate its location
in time. Secondly, the most difficult part of finding good FI parameters are the
electrical properties like glitch voltage and length. The right values for these
two dimensions will make the target physically behave in an unspecified way,
and most importantly, they will do so on any smart card of the same make (or
production batch), regardless of the implemented software.

2.2 Verdict Classes and Boundaries

Fault injection testing equipment can output only verdict classes that correspond
to successful measurements. There exist several possible classes for classifying a
single measurement (i.e. attack attempt):

1. NORMAL: smart card behaves as expected and the glitch is ignored
2. RESET: smart card resets as a result of the glitch
3. MUTE: smart card stops all communication as a result of the glitch
4. INCONCLUSIVE: smart card responds in a way that cannot be classified in

any other class

5

5. SUCCESS: smart card response is a specific, predetermined value that does
not happen under normal operation

In the rest of this paper, we will consider RESET and MUTE classes as equiv-
alent when interpreting the results. Additionally, when depicting graphs with
measurement results, for each of classes we allocate a color. When the card re-
sponds NORMAL, we depict a green dot in the search space, for RESET/MUTE
we depict a blue color, for INCONCLUSIVE yellow color and finally, for SUC-
CESS red color.

2.3 Search Space Parameters

There are multiple search space parameters that need to be set in the fault
injection process. We informally divide those parameters into two groups. The
first group consists of parameters that we influence with an external search space
algorithm and are therefore of primary interest. The second group consists of
parameters that we leave for fault injection framework to set randomly.

In the first group we include the following parameters: glitch length, glitch
voltage and glitch offset. The glitch length refers to the time (ns) that the VCC
line is perturbed. The glitch voltage is the number of miliVolts (mV) that is
added to the VCC line. The glitch offset is the start time (ns) of the perturbation
relative to the start of the clock cycle.

For example, suppose that the glitch length is 100 ns, the glitch voltage is
-3 500 mV , the glitch offset is 250 ns, and the supplied VCC is 5 V . What will
happen is that 250 ns after the start of the clock cycle the VCC line will be
pulled down to 1.5 V for 100 ns, after which it will be restored to 5 V .

Those three parameters determine the electrical effect on the target: roughly
speaking the product of glitch length and glitch voltage represents the amount of
energy that is exerted on (or withheld from) the target. Since the current prop-
agation within a clock cycle is not constant the offset timing is also important.
We refer to the three parameters as the “shape” of the glitch. Note that this is
a physical effect: if the glitch is too strong the target will “mute” or reset. On
the other hand, if the glitch is too weak the target will not be disturbed, but
if the glitch is of an appropriate shape the target will behave in an unspecified
way. This is unrelated to the logical effect, which refers to the exact instruction
that is being glitched.

The second parameter group covers the logical effect and it consists of the
number of wait cycles and the number of glitch cycles. The wait cycles parameter
refers to the number of clock cycles that are skipped before the glitch attack is
performed, counting from the sending of the smart card command. The glitch
cycles parameter specifies the number of successive clock cycles that are glitched.

For example, we could wait for 800 clock cycles and then apply the glitch
in the next 5 cycles, assuming the relevant instruction is executed close to the
foreseen time frame. The fact that the electrical effects can be observed inde-
pendently of the logical effects allows the security analyst to work in two phases.

6

First he will find a glitch “shape” that triggers the target to behave in an un-
specified way. In the second phase he can search for the right wait cycles and
glitch cycles values while applying the right glitch. In this paper we disregard
the logical parameters. We assume reasonable ranges for the wait/glitch cycles
and select uniformly at random from these ranges.

A useful property of the glitch shape parameters is that they display locality.
The glitch offset has only a small range of values that “work”. On top of that, the
glitch voltage and the glitch length shows a monotonic behavior: once a glitch
voltage is strong enough to force a card reset, then bigger values will also force
a reset. The same goes for the glitch length. In practice this means that there
is a clear phase transition in the voltage/length dimensions between NORMAL
results and RESET/MUTE results. Also, the class of SUCCESS results (when
offset is also guessed correctly) is often located around this phase transition. Note
however that the exact effect of a glitch is stochastic and a perfect separation of
parameter regions is impossible.

3 Approach and Methods

Looking for spots that lead to the successful fault injection can be considered as
an optimization problem where we want to find as much “good” spots as possible
in the minimal amount of time. The complexity of the problem depends on the
number of considered parameters. However, before trying to give an answer about
appropriate methods, we offer an illustration of the difficulty of the problem.

In a realistic setting that we consider, the glitch voltage parameter ranges
from -5 000 mV to -50 mV , with a minimal step of 50 mV . The second pa-
rameter, glitch length, ranges from 2 ns to 150 ns with a step of 2 ns. If we
conduct experiments where we are interested in only those two parameters and
do exhaustive search, we need 7 400 measurements. If we assume that each mea-
surement lasts one second, this gives us total time of two hours. However, if we
add just one more parameter, e.g. glitch offset that goes from 100 ns to 400 ns
with the 1 ns step, then we have in total 2.2 million measurements. This equals
to more than 600 hours of measurement time. Naturally, one also needs to take
into account possible consequences for a smart card if it is tested for more than
600 hours and the fact there are several more parameters of interest not even
mentioned in this calculation.

The first objective targets at finding as many successful parameter combina-
tions as possible, without regarding their values and their relation to each other.
The second objective, on the other hand, aims to map the parameter space into
regions with the same behavior outcome of the smart card. It is expected that
the parameter combinations that result in the same behavior form regions in
the search space which are adjacent to regions with different target behavior.
Our experiments show that the region boundaries cannot be described with lin-
ear functions, and it is exactly along the boundaries that the successful attacks
could be performed. Therefore, the objective of the search space characterization

7

is to provide boundaries between different regions with as few measurements as
possible.

When looking for faults we can expect that more attempts should be made
with parameter values that resemble those that led to a fault, but from the other
perspective, the analysis will use more measurements and will result in other
regions less analyzed. On the other hand, when looking for a region of interest,
we can expect that the algorithm will also find faults, but that behavior should
not be specially rewarded.

3.1 Genetic Algorithm

Genetic Algorithms (GAs) belong to a subclass of evolutionary algorithms where
the elements of the search space S are arrays of elementary types [15].

In our approach we need to change several parts of a standard GA in order to
work with this specific problem setting. A ’standard’ GA assigns fitness values
to different points in the search space (individuals or potential solutions) and
maintains a population of those, usually initialized randomly. A potential solu-
tion in this context represents the values of the three parameters in our search
space. In each iteration (generation) it selects the better ones and eliminates the
worse, combines different individuals to produce new ones (using the crossover
operator) which replace the eliminated ones and randomly changes parts of new
individuals (using mutation).

First, we need to map verdict classes to fitness values. Since the objective is
to maximize the value of fitness function, we give higher values to verdict classes
that are of a bigger importance. Observing that we are looking for parameters
that behave differently from NORMAL behavior, for NORMAL class we give
the smallest value of 1. RESET and MUTE classes we consider the same and we
give them a value 2 since we expect to find faults in areas between NORMAL
and RESET. Finally, for SUCCESS class we give a value 3. Since we are not
able to define the INCONCLUSIVE class, we also assign it the same value as
for the RESET/MUTE class.

Next, instead of a standard crossover operator we use the custom version -
local crossover (LC). In this operator, the first crossover point (potential solu-
tion) is chosen randomly. The second point is chosen so the LC operator crosses
two points that belong to different classes, and it generates a new offspring point
between the parents. The position of the offspring point is chosen on the basis
of the number of solutions in complete population that belong to the parents
classes: a child is proportionally closer to the parent with the class that is less
represented, i.e. the class with the smaller number of individuals in the popu-
lation. Only in the case when the first parent belongs to SUCCESS class, this
operator tries to find a second parent in the same class. A mutation is con-
ducted by adding some random value to the parameters. We present a GA with
aforementioned modifications as Algorithm 1.

8

Algorithm 1 Genetic Algorithm.

Require: crx count = 0, mut count = 0
repeat

select first parent
if first parent of SUCCESS class then

try to find matching second parent
else

try to find second parent of different class
end if
perform crossover (depending on parent classes)
copy child to new generation
crx count = crx count + 1

until pc ∗N 6= crx count
repeat

select random individuals for tournament
copy best of tournament to new generation
mut count = mut count + 1

until (1− pc) ∗N 6= mut count
perform mutation on new generation with probability pm
evaluate population

3.2 Tabu Search

Since there exist only a few different verdict classes (and consequently, only a
limited number of different fitness values) it is expected that a number of same
solutions will emerge that may be tested repeatedly. Since each such solution
leads to a unnecessary measurement, we adopt a technique from Tabu Search
(TS) optimization method. Tabu Search works by declaring certain solution
candidates that have already been visited as tabu and therefore not to be visited
again [15]. The advantage of using the TS method is twofold in our case: first,
we lower the total number of measurements performed and second, when not
revisiting already visited locations, the algorithm is less likely to get stuck in
a local optimum. We implement Tabu Search by using a list which stores all
the solutions that have been already measured and allocated fitness values. If
a new solution is created that is on the list, it is not measured but discarded
immediately. Note that we do not implement all TS functionalities, but only
those related with keeping the tabu list.

3.3 Local Search

Local search (LS) is a metaheuristic method for solving computationally hard
optimization problems [14]. Local search algorithms work on a single solution
(instead of multiple solutions) and generally transcend only to neighbors of the
current solution. It moves in the space of candidate solutions by applying local
changes until it finds an optimal solution or the time bound is elapsed [14]. In
our experiments we use one version of the divide-and-conquer algorithm where

9

each new solution is located in the middle of parent solutions (binary search).
In order to behave in such a manner, we need to define what is the space of
candidate solution, i.e. in what neighborhood it can operate. To this end, we
need to define an appropriate distance metric.

Two solutions are neighbors if they are at the distance smaller than d. In
this paper we experiment with Euclidean [16] and Manhattan [17] distance met-
rics. Since the search space parameters are of different magnitudes, we use a
normalized search range of [0, 1].

Euclidean distance between two points a and b in an n-dimensional space
is equals d(a, b) =

√∑n
i=1(ai − bi)2 [16].

Manhattan distance between two points is the sum of absolute differences
of their Cartesian coordinates and it equals d(a, b) =

∑n
i=1 |ai − bi|. [17].

In our experiments we use a local search algorithm after each GA genera-
tion. The local search works on all pairs of individuals that are closer than the
distance d and it runs while the distance between solutions is larger than the
resolution r. With the resolution parameter we control how precise the charac-
terization of the search space should be. We note that it was necessary to add
two parameters to control the local search algorithm. The distance parameter
d ensures that only individuals that are closer than d can participate in local
search. The resolution parameter r controls when the LS should stop operating
on each pair of individuals. Pseudocode for the LS is given in Algorithm 2.

Algorithm 2 Local Search algorithm.

create pool with all individuals ind
for all ind in the pool do

select ind tmp from the pool
d = distance (ind, ind tmp)
if d > resolution and d < distance and class (ind) != class (ind tmp) then

make pair
remove individuals from pool

end if
end for
for all pairs do

d = distance (ind 1, ind 2)
if d > resolution then

create point in between points
call evaluator
replace parent from the same class as offspring

else
remove pair

end if
end for

10

3.4 Memetic Algorithm

Memetic Algorithms (MAs) represent a synergy between evolutionary algorithms
(or any other population-based algorithm) and local improvement algorithms [15].
Most MAs can be interpreted as search strategies in which a population of so-
lutions cooperate and compete [14].

In our experiments, the memetic algorithm is a combination of three afore-
mentioned algorithms: genetic algorithm, tabu search and local search. Each of
those algorithms should lend its strength to obtain a new, synergistic one that
is more powerful than any of them individually. Genetic algorithms give their
strength when finding promising regions in search space. Local search improves
the convergence speed when looking for SUCCESS points (or regions between
two verdict classes) and tabu search reduces the number of measurements by
avoiding duplicate measurements.

4 Experiments and Results

In this section we present details about our experimental setup and the param-
eters considered. Afterwards, we present our results and give a short discussion.
Common parameters for all experiments are given in Table 1.

Table 1. Common parameters.

Parameter Parameter Value

Tournament size 3
Population size 30
Stopping criterion 10 generations
Mutation rate 0.1

Glitch length [2, 150] ns
Glitch voltage [-5 000, -50] mV
Glitch offset [100, 400] ns
Glitch cycles random from [1, 10]
Wait cycles random from [750, 850]

As it can be observed in Table 1 we use a small number of generations and
a small population size since we are interested in a rapid characterization or
finding faults. Indeed, if one has sufficient time at his disposal no method can
outperform exhaustive search.

4.1 Experimental Results

When conducting experiments, we compare our results with random search and
exhaustive search methods. Here we give the results for the two methods.

Random Search. In this method search space parameters are chosen uni-
formly at random. Figure 1(a) displays random search with 2 500 measurements.

11

Exhaustive Search. In order to check the full characterization of search space
we also run an exhaustive search algorithm. Here, parameters of interest are
glitch voltage, length and offset. Since there are too many possible solutions
for any realistic exhaustive search we conduct exhaustive search for glitch length
and voltage while other parameters are chosen uniformly at random. Figure 1(b)
shows the results of 7 500 measurements.

(a) Random search, 2 500 measurements (b) Exhaustive search, 7 500 measure-
ments

Fig. 1. Measurements for random and exhaustive search methods.

Next, we present results of our new algorithms separately for the case where
the goal is to find as many faults as possible and for the case where the goal is
the characterization of search space. After a short tuning phase we set distance
d parameter to the value of 0.3 and resolution r parameter to the value of 0.1
since with those values we observe the best behavior. However, our experiments
also show that these parameters are quite robust and small changes in values do
not significantly change algorithm performance.

4.2 Finding Faults

When the goal is finding faults, we conduct several runs of different algorithm
versions and then we present averaged values. Columns Normal, Reset and Suc-
cess show average number of NORMAL, RESET/MUTE and SUCCESS mea-
surements. In Table 2 we give the results for three different versions of our al-
gorithm where we can see that GA+TS+LS algorithm with Euclidean distance
metric finds the most SUCCESS points on average.

In Figures 2(a) and 2(b) we give an example of one run of GA+TS+LS
algorithm with Euclidean distance and 250 measurements. In this experiment,
with 250 measurements in total, we found 21 glitches which represents 8.5% of
total measured points.

12

Table 2. Average results of experiments.

Algorithm Normal (%) Reset (%) Success (%)

GA+TS 58.08 39.97 1.94
GA+TS+LS, Euclidean 55.29 41.87 2.84
GA+TS+LS, Manhattan 62.76 36.45 0.78

(a) Glitch voltage vs. glitch length (b) Glitch offset vs. glitch length

Fig. 2. GA+TS+LS, 250 measurements.

4.3 Search Space Characterization

When the goal is to characterize the search space, or more precisely the region
between NORMAL and RESET/MUTE classes, we are not interested in SUC-
CESS points. Therefore, we can treat them as NORMAL or RESET/MUTE
points (and give them fitness values 1 or 2, respectively). Again in this case, the
number of measurements is set to 250. In Figures 3(a) to 3(d) we present results
for search space characterization with four different algorithms.

We see that random search is not capable to characterize interesting regions
with a small number of measurements. A combination of GA, TS and LS algo-
rithms with Manhattan distance performs best since it accurately describes the
longest part of the interesting region.

When observing differences in regards to distance metrics, we see that Eu-
clidean distance gives better results when finding faults while Manhattan dis-
tance is better in space characterization scenario. However, this observation
should be considered cum grano salis since we use the same distance value in
both cases. It can be concluded that the smaller distances are better when look-
ing for specific points (smaller distances are to be expected in Euclidean metric
due to the squaring operation of normalized values) while bigger distance values
can cover more space and characterize it better as it can be seen from the case
where we use Manhattan distance. As evident from the results, the memetic al-
gorithm behaves much better than the genetic algorithm considered (although,
the GA we use is specialized and already behaves much better than the standard
GA).

13

(a) Random search (b) GA + TS

(c) GA + TS + LS, Manhattan (d) GA + TS + LS, Euclidean

Fig. 3. Algorithms for the space characterization, 250 measurements.

It is very difficult to give a meaningful comparison between the efficiency
of our algorithm and for instance algorithms presented in [6, 13] due to several
reasons. First, we add one more dimension (glitch offset) to the search space and
thus we render some of the operators from previous works non applicable. More-
over, our problem is much more difficult due to the extra dimension. Although
exhaustive search in two dimensions (with some parameter steps) would take
several hours we still consider it to be a realistic approach while with three pa-
rameter dimensions this problem becomes completely non practical in a realistic
environment. With the increase of the number of parameters, the methods pre-
sented here need no additional adjustment and should prove even more efficient
with regard to random search, which remains to be addressed.

Next, in our approach we set strict constraints on the available number of
measurements which was not the case in previous works (there the goal was a
minimal number of measurements without explicitly stating the minimal num-
ber). Furthermore, as GAs use information from known solutions in future gen-
erations, after finding several faults we can expect to find asymptotically more
faults in future generations and that probability increases with the number of
generations. In related work there is also a distinction that they conduct three
measurements per point to check for CHANGING class [6]. In our approach we

14

do not consider CHANGING class and consequently we do not conduct multiple
measurements of the same points.

Lastly, based on the results in [6] it seems that some of the SUCCESS points
that are found and taken into account in statistics are actually repeated mea-
surements of the same points. Since in our approach Tabu Search renders that
impossible, it would not be possible to compare those results without removing
TS constraint from our algorithm. As evident from our results, TS on average
reduces the total number of measurements by more than 20% which results in
more unique points our algorithm can generate.

5 Conclusions and Future Work

In this work we revisit the problem of fiddling with multiple parameters for
successful fault injection. Our experiments with the memetic algorithm show
that one can successfully find faults with a limited number of measurements.
Additionally, our algorithm can be used to characterize interesting search space
regions. Both scenarios are explored with a “small” i.e. feasible number of mea-
surements. By adding more measurements (and therefore GA generations) we
obtain even better results since the GA works by using existing solutions to
find new, better solutions. We do not claim that the GA (or the memetic algo-
rithm) is the best possible method, but we demonstrate there are nature-inspired
algorithms that can significantly improve the FI process.

Glitch testing in this work has only been performed on a target with no
countermeasures. Since it is expected that the search space is affected by such
countermeasures, e.g. glitch sensors, the applicability of this approach in a real
world attack scenario remains to be assessed. A possible step in our research is
therefore to experiment with smart cards on which countermeasures against FI
are implemented.

Acknowledgments

This work was supported in part by the Technology Foundation STW (project
12624 - SIDES), The Netherlands Organization for Scientific Research NWO
(project ProFIL 628.001.007) and the ICT COST action IC1204 TRUDEVICE.

References

1. R. Anderson and M. Kuhn, “Tamper resistance — a cautionary note,” in In Pro-
ceedings of the Second Usenix Workshop on Electronic Commerce, 1996, pp. 1–11.

2. O. Kömmerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard
processors,” in Proceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, ser. WOST’99. Berkeley, CA, USA:
USENIX Association, 1999, pp. 2–2.

15

3. S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Se-
crets of Smart Cards (Advances in Information Security). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

4. P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology,
ser. CRYPTO ’99. London, UK, UK: Springer-Verlag, 1999, pp. 388–397.

5. J.-J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards,” in Proceedings of the International Confer-
ence on Research in Smart Cards: Smart Card Programming and Security, ser.
E-SMART ’01. London, UK, UK: Springer-Verlag, 2001, pp. 200–210.

6. R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and M. Golub,
“Glitch it if you can: Parameter search strategies for successful fault injection,” in
Smart Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers,
2013, pp. 236–252.

7. D. Boneh, R. DeMillo, and R. Lipton, “New threat model breaks crypto codes,”
Bellcore 85 Press Release, 1996.

8. D. Boneh, R. A. Demillo, and R. J. Lipton, “On the importance of checking cryp-
tographic protocols for faults.” Springer-Verlag, 1997, pp. 37–51.

9. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault attacks
on RSA with CRT: Concrete results and practical countermeasures,” in Revised
Papers from the 4th International Workshop on Cryptographic Hardware and Em-
bedded Systems, ser. CHES ’02. London, UK, UK: Springer-Verlag, 2003, pp.
260–275.

10. S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in Re-
vised Papers from the 4th International Workshop on Cryptographic Hardware and
Embedded Systems, ser. CHES ’02. London, UK, UK: Springer-Verlag, 2003, pp.
2–12.

11. J. van Woudenberg, M. Witteman, and F. Menarini, “Practical optical fault injec-
tion on secure microcontrollers,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2011 Workshop on, 2011, pp. 91–99.

12. J. Balasch, B. Gierlichs, and I. Verbauwhede, “An In-depth and Black-box Char-
acterization of the Effects of Clock Glitches on 8-bit MCUs,” in Proceedings of the
2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, ser. FDTC ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 105–114.

13. S. Picek, L. Batina, D. Jakobovic, and R. B. Carpi, “Evolving genetic algorithms for
fault injection attacks,” in 2014 Proceedings of the 35th International Convention,
MIPRO 2014, Opatija, Croatia, May 26-30, 2014. IEEE, 2014.

14. F. W. Glover and G. A. Kochenberger, Eds., Handbook of Metaheuristics, 1st ed.,
ser. International Series in Operations Research & Management Science. Springer,
Jan. 2003, vol. 114.

15. T. Weise, Global Optimization Algorithms - Theory and Application, 2nd ed., 2009,
online available at http://www.it-weise.de/.

16. R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2d euclidean distance
transform algorithms: A comparative survey,” ACM Comput. Surv., vol. 40, no. 1,
pp. 2:1–2:44, Feb. 2008.

17. E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry, ser.
Dover Books on Mathematics. Dover Publications, 1988.

