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Abstract. Cloud’s unrivaled cost effectiveness and on the fly opera-
tion versatility is attractive to enterprise and personal users. However,
the cloud inherits a dangerous behavior from virtualization systems that
poses a serious security risk: resource sharing. This work exploits a shared
resource optimization technique called memory deduplication to mount
a powerful known-ciphertext only cache side-channel attack on a popu-
lar OpenSSL implementation of AES. In contrast to the other cross-VM
cache attacks, our attack does not require synchronization with the tar-
get server and is fully asynchronous, working in a more realistic scenario
with much weaker assumption. Also, our attack succeeds in just 15 sec-
onds working across cores in the cross-VM setting. Our results show that
there is strong information leakage through cache in virtualized systems
and the memory deduplication should be approached with caution.

Keywords: Asynchronouos Cross-VM Attack, Memory Deduplication, Flush
and Reload, Known Ciphertext Attack, Cache Attacks

1 Introduction

Cloud computing and virtualization is popular more than ever with large compa-
nies like Microsoft, Google, Amazon, IBM, Oracle, Rackspace and many others
investing billions of dollars trying to get a foothold in this new area of lucrative
business. This rapid increase in the number of cloud service providers is directly
related to the emergence of server-less companies like Netflix, Dropbox, Insta-
gram, Pinterest, Reddit, Imgur and many others that are using commercial cloud
infrastructure [10]. Instead of buying expensive servers without knowing exactly
how many of them they need, and then hiring IT personnel to maintain those
servers, these fast growing companies have chosen to use public cloud systems
to maintain their software and services.

The opportunities of using the commercial cloud are fairly obvious how-
ever, threats are not. Sharing a physical system between users reduces the cost
while increasing the utilization hence the productivity. The isolation between
the Virtual Machines (VM) in these systems is maintained by the Virtual Ma-
chine Manager (VMM) at the software level. However, software layer confinement
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techniques that force the sandboxing does not guarantee complete isolation and
cannot ensure the prevention of data leakage from one VM to the other. The
most common source of information leakage across VM boundaries is the shared
cache and the memory of the underlying physical system. Particularly memory
deduplication allowed researchers to mount attacks that threaten both the user
privacy and the security of the cryptographic systems.

In 2009, Ristenpart et al. [24] showed that it is possible to co-locate with
a target on a cloud environment, namely Amazon EC2, and extract keystrokes
from the co-located VM. In 2011, by exploiting the Kernel Samepage Merging
(KSM), Suzaki et al. [25] was able to detect processes like sshd, apache2, IE6
and Firefox running on a co-resident VM. The significance of this study is that
it is possible to not just detect the existence of a target VM, but also detect
running processes.

Recently in 2013 Yarom et al. [29] applied the Flush+Reload attack across
VMware VMs to recover a RSA key. Later in 2014, Irazoqui et al. [14] used
Bernstein’s AES cache timing attack to partially recover an AES key from vari-
ous AES crypto library implementations in a cross-VM setting under XEN and
VMware ESXI hypervisors. Also in 2014, Irazoqui et al. [15] implemented a
cross-VM access driven cache attack on AES in a VMware ESXI system using
the Flush+Reload attack.

Our Contribution

In this work, we implement for the first time a known-ciphertext cross-VM at-
tack on AES using the Flush+Reload method and use three distinct data analysis
methods to fully recover the secret key with varying encryption observations for
different scenarios. For the attack, we take advantage of VMware ESXI’ s mem-
ory deduplication mechanism called the Transparent Page Sharing. The attack
is mounted on a multi-core high-end server, a specification found commonly on
commercial cloud systems and does not require the attacker and the victim to
be running on the same physical CPU core. Compared to the attack in [12], our
attack is minimally invasive and works with less assumptions since the attacker
does not need to control or exploit in any way the target process execution.
Also compared to [15], the new attack does not assume to have access to the
encryption server and works only by listening to the encryption server via cache
covert channel and obtaining the ciphertexts from the network channel.

In summary, this work

– for the first time, mounts a cross-VM, known-ciphertext only AES key
recovery attack using the Flush+Reload technique

– improves upon the previous cross-VM AES cache attacks by flushing in
between the encryption rounds

– presents three distinct analysis methods that can be adapted to any table-
based block ciphers
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2 Cache Side-channel attacks

Cache side-channel attacks exploit microarchitectural leakages stemming from
memory access time variations, e.g. when the data is retrieved from small faster
memories called caches as opposed to slow bulk memories. Caches are useful due
to two main principles, i.e. the temporal and spatial locality. Temporal locality
predicts that recently accessed memory locations are likely to be accessed soon
again, while spatial locality predicts that data located nearby the accessed mem-
ory locations are also likely to be accessed soon. In general, caches hold not only
recently accessed data, but also an entire cache line containing data in nearby
locations. In modern CPUs, caches are organized into multiple levels L1, L2 and
L3 where the first two levels are smaller and core exclusive, while the last level
is considerably larger and is shared across cores. While retrieving data from any
level of the cache is faster than retrieving the same data from the main memory,
higher levels of the cache are even faster than lower levels. L1 being the fastest,
L3 the slowest, different cache levels have different access times which enable
attacks like Prime+Probe to distinguish between accesses to the L1 cache and
to the L3 cache. In addition, the last level of cache is shared between all cores,
giving the attackers the opportunity to use it as a covert channel between cores
and mount attacks such as Flush+Reload.

2.1 Related Work

The first theoretical consideration on the extraction of information via cache
memories was demonstrated by Hu [13], whereas 6 years later Kelsey et al. [18]
expanded this consideration by suggesting the presence of cache leakage due
to the hit/miss ratio. Following up Kelsey’s work, Page described a theoretical
chosen plaintext attack based on the collection of cache profiles [23]. One year
later Tsunoo et al. [26] proposed the first practical implementation of cache
attacks on the DES cryptographic algorithm.

The first practical cache side-channel attack on AES appeared in 2005 by
Bernstein [7] showing that the table look up operations from different cache lines
have different access times in an AES encryption. Further, he showed that using
this cache access time information, an adversary can recover secret encryption
key from a popular AES implementation, i.e. the OpenSSL cryptographic library.
In a similar attack, Osvik et al. [22] presented two spy processes that are able to
monitor the cache usage: evict+prime and prime+probe. Although the latter
one proved to be significantly more efficient, both spy processes recovered the
AES encryption key used by an OpenSSL server. A few months later, Bonneau and
Mironov [8] and Acıiçmez and Koç [5] presented new attacks targeting AES that
exploited internal table look up collisions in the cache during the last and first
rounds respectively. In spite of the prominent successful attacks on symmetric
key cryptography, public key cryptography was also considered a popular target
for cache side-channel attacks. Indeed in 2007, Acıiçmez demonstrated the usage
of the prime and probe spy process in the instruction cache against a RSA
encryption.
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Cloud computing systems became the next challenge for side-channel attack
researchers. In 2009, after Ristenpart et al. [24] demonstrated that they were
able to co-locate an attacker’s virtual machine (VM) with a potential victim’s
VM with a success probability of 40% in the Amazon EC2 cloud. Even further,
the authors managed to recover keystrokes from the co-resident victim’s VM,
showing that the cache side-channel attacks are both practical and applicable to
real world scenarios. The possibility of co-location fueled further research on new
cache side-channel techniques and cache leakages in VMs. For instance, in 2011
Chen et al. improved over the previous RSA attacks in the instruction cache [9]
while Gullasch et al. discovered a new side-channel technique that would later
be called the Flush+Reload [12]. The Flush+Reload attack recovered AES se-
cret keys by taking control of the Completely Fair Scheduler (CFS) [16, 3]. At
the same time, previous side-channel techniques such as Prime+Probe were also
adapted to work in virtualized settings by Zhang et al. [30, 31]. They utilized a
spy process to detect co-resident tenants and to recover El Gamal encryptions
keys. More recently, Yarom and Falkner [29] applied the Flush+Reload tech-
nique to recover, for the first time, RSA encryption keys across VMware and
KVM VMs. Shortly later Benger et al. [6] demonstrated the viability of the
Flush+Reload technique to recover ECDSA encryption keys. Finally, Irazoqui
et al. [14, 15] recovered AES keys in virtualized environments with Bernstein’s
attack and the Flush+Reload technique.

2.2 Memory deduplication

Memory deduplication is an OS memory optimization technique that allows the
OS to keep only a single copy of a data in the memory when multiple processes
are using the same data. While this feature is useful in native execution, it is
even more useful in virtualized setting where many VMs use the same OS and/or
the same software.

Hence, to reap the benefits of the deduplication, VMMs have also imple-
mented memory deduplication techniques to allow more VMs to run on the
same physical machine. For this, the VMM recognizes identical and redundant
memory copies by first checking their hash values and then performs a bit-by-
bit comparison. If the memory content is determined to be shared by more
than one process/VM the memory manager removes multiple copies from the
memory. Note that even though this deduplication process is only performed on
shareable memory pages like shared libraries, shared libraries are used in many
software packages. Memory deduplication methods are especially effective when
hosting multiple processes, as is the case in virtualized systems. Consequently,
VMMs like VMware [27, 28] and KVM [4, 17] implement variations of mem-
ory deduplication, i.e. Transparent Page Sharing(TPS) and Kernel Samepage
Merging(KSM), respectively. While the memory saving optimization techniques
improve the performance they also create a covert channel that a malicious VM
can exploit. In fact, memory disclosure attacks [25] and side-channel attacks [29,
6, 15] have been proposed taking advantage of memory deduplication techniques
in the cloud.
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Fig. 1. Data access time in hardware cycles when the data is located in the cache and
in the memory

2.3 The Flush+Reload Side-Channel attack

The Flush+Reload is a trace driven cache side-channel attack that was first used
in [12], but acquired its name in [29]. The attack is based on shared memory
leakage coming from deduplication processes. One of the main advantages of the
Flush+Reload spy process is that it does not require the attacker to be core co-
resident with the victim and works in a cross-core scenario as long as a shared
last level cache exists. The attack is carried out in 3 main stages:

Flush stage: In this stage the attacker flushes one or more of the desired
memory locations from the cache using the clflush command. More precisely,
clflush evicts the desired memory locations from the entire cache hierarchy,
i.e. even from the non-shared cache hierarchies if the last shared level cache
is inclusive. Indeed this is the main reason why the attack is applicable across
cores.

Victim access stage: In this stage, the attacker waits for sufficient time for
the victim to use (or not use) the memory locations that he has flushed in the
previous stage.

Reloading stage: In the final stage, the attacker reloads the previously flushed
memory locations, measuring the reload time for each one of them. If the victim
accessed one of the flushed memory lines, due to the inclusiveness of the shared
level cache, they will not only be loaded in the upper level caches but also in the
shared level cache. Thus, the attacker will measure a lower reload time compared
to data accesses to the main memory since the line will be retrieved from the
cache. However if the victim did not access to the data flushed in the first stage,
the data will still reside in the memory, causing a higher reload time in this
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reload stage. The different distributions for a memory block accessed from the
L1 cache and a memory block accessed from the main memory can be observed
in Figure 1. It can be concluded that Flush+Reload offers a high distinguish-
able covert channel due to the significantly different distributions. However, the
execution of microarchitectural side-channel techniques can suffer from multi-
ple sources of noise that can be observed in two different ways. The first is a
measurement inaccuracy: noise can be introduced by the microarchitecture, by
the OS and by the VMM. Often, this noise results in a moderate increase in the
number of cycles. However, if e.g. a context switch happens during start and end
of a measurement, the value might be off several orders of magnitude. This can
be handled by introducing a threshold. Note that such outliers have a significant
impact on higher order statistical moments if not filtered out. This said, even
with a reasonable threshold, the noise is definitely not Gaussian, possible better
described by ExGaussian distributions. The second effect of noise is independent
of the measurement process. This happens if a cache line is loaded or evicted by
another process. In this case, the source of the timing changes, in addition to
the noise introduced during measurement.

3 Attack Description

Our attack uses the side-channel technique known as Flush+Reload to monitor
accesses to memory blocks. The Flush+Reload is applicable in the cross-VM
setting if deduplication is enabled by the hypervisor and the monitored part of
the memory is deduplicated. The latter is true if the monitored data is marked
as shared (as is the common case for all crypto libraries) and the hypervisor has
detected the duplicated data referenced from within both VMs. Also, different
than the attack in [15], we utilize a separate AES detection step to detect the
AES execution on the co-located target VM and eliminate the synchronization
requirement with the server through the plaintext generation. This makes the
proposed attack much more practical. We access the AES function memory
address to detect the beginning of AES execution by Flush+Reload method.
The reason why we access the memory location instead of simply running AES
is that accessing a single memory location is much faster than running AES,
allowing a higher attack resolution.

3.1 A single cache line attack on AES

The adversary monitors accesses to a single block of one of the T tables used
in the last round of AES. In addition to the information t whether the T Table
was accessed, the adversary needs to know the corresponding ciphertext c (or
plaintext for a first-round attack). That is, we assume the adversary is able
to collect several tuples 〈c, t〉. The monitored memory block corresponds to n
T table entries T known to the adversary. For a monitored ciphertext byte Ci,
these entries correspond to n T table outputs Si, which are mapped one-to-one to
n ciphertext byte values through addition with the key. Hence, ci,j = ki ⊕ si,j ,
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(a) Distribution f0 for case H0 (b) Distribution f1 for case H1

Fig. 2. Leakage Distributions f0 and f1 if Hypotheses H0 and H1 are correct. The
measurements were taken in an Intel i5 2430M CPU in SSA scenario.

where i is a byte position (ignoring the shift rows operation) and j indicates
different values. If si,j is equal to one of the values of the monitored T table
memory block, i.e. si,j ∈ T, then the monitored memory block will be accessed
hence loaded to the cache. We will refer to this case as H0. However, if si,j /∈ T,
i.e. si,j takes a value stored in a different memory block, then the monitored
memory block is not loaded. Nevertheless, since each T table is accessed l times,
there is still a high probability that the memory block was loaded by any of
the other accesses. In fact, the probability that a memory block is not accessed
during an encryption is given as: Pr [no access to Tj ] = (1− n/256)

l
. We will

refer to this event as H1.
For AES-128 in OpenSSL 1.0.1g, n = 16 and l = 40 per Tj , and there-

fore 100%− ε0 of reloads are expected to come from the cache in H0, and only
92%+ε1 for H1, where εi are noise terms. Hence, a side-channel containing infor-
mation about memory/cache accesses will feature differing leakage distributions
f0 and f1 for cases H0 and H1, respectively. To distinguish H0 from H1 the
Flush+Reload method can be applied. In fact, using the Flush+Reload method,
one can, with high probability, distinguish a cache access from a memory access
as seen in Figure 1. In our scenario (as described in Section 4) the leakage dis-
tributions f0 and f1 are depicted in Figure 2. The distributions are derived from
the reload times measured by the Flush+Reload attack. The first peak in both
distributions (at around 35 cycles) corresponds to a noisy cache reload, and the
second peak (at around 220 cycles) corresponds to a memory reload. Since f0
corresponds to H0 and hence has more cache reloads than f1, these distributions
are distinguishable. This leakage was successfully exploited in [15].

3.2 Distinguishers for the AES Attack

To process the side-channel data, we describe and compare three distinguishers.
The distinguishers we present here analyze one byte of the ciphertext c together
with the access time t to the corresponding T table block to recover one byte k
of the last round key.

As described earlier, our observations are split into two sets according to a
hypothesis. If this hypothesis is correct, the resulting leakage distributions f0



8

and f1 for the two sets differ and hence—with sufficiently many observations—
become distinguishable. For wrong key guesses, however, the hypotheses will be
invalid, and both sets will sample from the same mixed distribution, making
them indistinguishable. To detect whether samples for hypotheses H0 and H1

are actually from different distributions, we can apply several distinguishers.
In the following we propose three distinguishers. The probably most common
distinguisher is based on the difference of the means of the two distributions [20,
11]. As for the zero-value DPA [21], our hypothesis deviates from a single-bit
prediction, yet, the test still just distinguishes two cases. Similarly, the variance
test uses a statistical moment to distinguish the two distributions [19, 20, 11]. The
last distinguisher applies a miss counter, as in [15]. The list is neither exhaustive,
nor do we make an optimality claim. The latter is interesting future work that
needs to be preceded by a better understanding and analysis of the underlying
noise characterization, as noise can come from several different sources and is
far from being Gaussian.

For the following descriptions we refer to the average miss counter value
for Hi as ctrHi , whereas we refer to the difference of means and difference of
variances for fi as τHi

and var τHi
, respectively.

Miss-counter based Distinguisher This distinguisher counts and compares
the memory block misses for the two cases H0 and H1. Ideally, there should be
no misses for H0, as the memory block must have been accessed by the AES
execution. To establish a miss counter, reload timings are converted to either
a hit (0) or a miss (1), depending on whether the value is above or below a
threshold access time. As seen in Figure 1, a good threshold for our processor
and probing code is 130 cycles. Since H1 contains significantly more values than
H0, we compare the relative counters instead of absolute ones. Our distinguisher
becomes:

Dmiss ctr = arg max
k̂

(
ctrH1 − ctrH0

)

Difference of Means Distinguisher The difference of means distinguisher
approximates the means of the two distributions and outputs their difference in
cycles.

Dmeans = arg max
k̂

(τH1
− τH0

)

Since H0 should feature more cache accesses than H1, τH0
is expected to be

smaller, i.e. the biggest positive difference corresponds to the most likely key
hypothesis. Welch’s t-test distinguisher (which divides the means with their re-
spective variance) can be equally well applied to guess the correct key. Indeed,
Welch’s t-test is commonly applied to check two hypothesis where two gaus-
sian distributions have different means and variances. In this work, we studied
Welch’s t-test and did not obtain an improvement over the difference of means.
Thus, we use the difference of means distinguisher due to its simplicity.
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Variance based Distinguisher The difference of variances distinguisher out-
puts the difference of variances in cycles.

Dvars = arg max
k̂

(var τH1
− var τH0

)

Note that, as before, the variance of H0 should be smaller than that of H1.
However, outliers can badly affect this distinguisher. In cache attacks, signifi-
cant outliers that can be orders of magnitude larger than regular data are not
uncommon and need to be filtered to make this distinguisher work. Since Hi is
key dependent, the guessed key k̂ that maximizes the difference is the most likely
to be correct. Note that the sign carries information in all three tests. In fact,
the case H0 and its leakage f0 correspond to fewer cache misses, hence a lower
miss counter, a lower average (mean) access time, and also a lower variance.
The results will show that taking the sign into account derives a much better
distinguisher.

When the three distinguishers are compared, the miss counter approach has
the most interesting properties: It is quite intuitive, as cache misses and hits are
what we are looking for. Furthermore, the method is only marginally affected by
outliers. The main disadvantage of this method is the requirement of a threshold,
which is processor-dependent and requires some minimal profiling. The other
two methods are more affected by outliers. All three distinguishers can easily be
converted to a correlation method. Indeed, by correlating the right term (e.g.
τH0

) to 0 for H0 (a guaranteed cache hit with low reload time) and 1 for H1 (a

possible cache miss with higher reload time), the most likely key k̂ features the
highest correlation.

3.3 Attack Scenarios

Next, we describe the principles of our new Flush+Reload attack as well as the
original and the improved versions of the attack in [15]. We will refer to the attack
in [15] as the Fully Synchronous Attack (FSA) and the improved version of it
with the additional AES detection step as the Semi-Synchronous Attack (SSA).
Finally, the attack scenario where the attacker requires no synchronization with
the server will be referred as the Asynchronous Attack (ASA). In the following,
we explain and compare these attacks in detail, listing challenges and advantages
of each version.

FSA This is the original attack used in [15] where the attacker first flushes
the T tables, then sends a plaintext to the encryption server to trigger an AES
encryption. The server receives the plaintext from the attacker, and sends the ci-
phertext back. Upon receipt of the ciphertext, the attacker reloads the monitored
T table blocks to learn which entries were accessed by the encryption.

SSA In this version of the attack, we improved over the FSA by detecting the
AES encryption using the Flush+Reload method but there is still a need for
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trigger event by the adversary. The advantage of this attack is the usage of an
AES encryption detector that detects whether the victim is performing an AES
encryption. Once the AES encryption function call is detected, the attacker
flushes the monitored T table blocks during the AES execution in between
AES rounds. Flushing in between rounds reduces the number l− 1 of unrelated
accesses to the T table accesses, hence increasing the number of memory accesses
for case H1. In addition, we know that the detection algorithm takes half of the
timing of an AES encryption. Therefore, at least half of the rounds of the AES
encryption is eliminated by this detection mechanism. This results in a more
biased distribution f1, i.e. a stronger leakage. Consequently, the attack succeeds
with fewer encryptions.

ASA In the ASA, we improve over the previous two attacks by not requiring any
trigger event by the adversary. Instead, plaintexts are generated by the server in
regular intervals of 5M cycles. The adversary uses an AES detector to detect the
AES function call and perform the Flush+Reload attack on the fly. In addition
the network is monitored to recover transmitted ciphertexts. Unlike the previous
attacks, this attack is a true ciphertext-only attack.

Note that the ASA presents a more realistic attack scenario than those pre-
sented in [12] and [15]. In [12] Gullasch et al. described a Flush+Reload attack
on AES implementation of the OpenSSL library where they overload the CPU
and suspend the AES encryption by controlling CFS. In [15] authors require
synchronization with the server through the plaintext generation. In contrast to
these previous attacks, our attack differs in the following ways:

– Our attack flushes the T tables during the AES encryption rather than
before;

– CFS exploitation or any other type of CPU overloading is not necessary;
– Synchronization through the plaintext is no longer required, but the AES

encryption call is detected instead;
– Improved side-channel data analysis/key recovery methods recover the key

with fewer encryptions.

4 Experiment Setup

For the experiments, we have used the following two setups;

� Native Execution: In this setup, the AES encryption process and the
attacker run on a native Ubuntu 12.04 LTS version with no virtualization.
In this setting, we have used a two core Intel i5-2430M CPU clocked at 2.4
GHz. The purpose of this scenario is to run the attack in an environment
with minimal noise and to achieve comparability to former non cross-VM
cache attacks.

� Cross-VM Execution: In this setup, two up-to-date Ubuntu VMs, VM1
and VM2 are launched and managed by VMware ESXI 5.5 baremetal hyper-
visor. The attacks are then performed across hypervisor isolation boundaries.



11

The first VM is used as the target that does the AES encryption while the
second VM acts as the attacker and executes the Flush+Reload attack, try-
ing to recover the secret key. The experiments in this setting were performed
on an Intel Xeon E5-2670 v2 CPU. This setup reflects a realistic attack sce-
nario by using a modern CPU commonly used in commercial cloud systems
[1, 2]. In this setup, data access from the cache takes 30 cycles and the mem-
ory takes 233 cycles on average. Also in the same specification, single AES
encryption without and with pre-flushed T-tables requires 257 and 659 cy-
cles, respectively. As the Figure 1 shows, the timing separation between the
CPU cache and the main memory is clear with very few outliers. We further
observe in Figure 1 that the AES execution time changes greatly depending
on whether or not the T-tables used for the encryption are loaded in the
cache.

Note that all the timing measurements in the experiments are gathered using
the Read Time Stamp Counter and Processor ID (RDTSCP) instruction. The
usage of the RDTSCP instruction is allowed in VMware user mode, but not in
KVM. Moreover, this instruction is not emulated by the VMM but executed di-
rectly, unlike other serializing instructions like CPUID used in [15]. Also, the flush-
ing operation is performed using the Cache Line Flush (CLFLUSH) instruction.

In all experiments, one target process executes AES encryption while the
attacker process tries to recover the secret key by monitoring the T-tables with
the Flush+Reload technique. In order to clearly show the the attack success
under different assumptions, we have used two distinct attack environments.

5 Results

We performed the experiments for all three attack scenarios, i.e. FSA, SSA and
ASA in both native and virtualized environments. Furthermore, we analyze the
timing behavior to show the improvement on the success rate by using the three
different distinguishers mentioned in Section 3.2: the miss counter distinguisher,
the difference of means distinguisher and the difference of variances distinguisher.

At first we present and compare the scores of the key guesses using the three
different distinguishers in native execution in Figure 3. The difference of means
and variances distinguishers suffer more from noise due to heavy outliers stem-
ming from different microarchitectural sources of noise. However the experiments
shown in Figure 3 were taken cutting off outliers with an outlier threshold value
of 5 times the memory access time. It can be seen that for 10,000 encryptions
the three distinguishers clearly maximize the score for the correct key, i.e. 180
in this case.

Then, the results of the three different attack scenarios is presented in Ta-
ble 1 by comparing the ratio between cache accesses and memory accesses for
cases H0 and H1. The precise distribution for the SSA scenario was given in
Figure 2. Recall that without noise, the ratio should be 100%/0% for H0 vs.
92%/8% for H1 for the FSA scenario and even more biased for the SSA scenario.
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(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 3. Comparison of the scores of key guesses in the natively executed FSA scenario
for three different distinguishers based on the miss counter (a), difference of means (b)
and difference of variances (c), applied to 10000 traces. The correct key is 180 and
clearly distinguishable in all three cases.

The probability distribution shows that for H0 approximately 95% of the reload
values are coming from L3 cache while only the 5% come from the main memory.
In H1 however, the reload values coming from L3 cache are down to 88%, while
the values coming from the main memory increase to 12%. Also, it can be seen
from the Table 1 that there is a significant improvement in the distinguishabil-
ity for SSA scenario due to flushing during AES encryption. Flushing during the
encryption translates into lower noise in the T table measured access times and
an improved success rate. However, the increased number of detected memory
accesses for SSA is likely caused by flushes occurring after AES encryption has
terminated. Thus, although the more realistic ASA scenario decreases the suc-
cess rate, in comparison to the SSA scenario due to the difficulty of the AES
detection. Hence, SSA is the most efficient way to decrease the noise and have a
good resolution to find the correct key with a small number of encryptions.

Table 1. Distribution of cache accesses vs. memory accesses for the two hypotheses
over the three attack scenarios. SSA provides the best distinguishability.

Attack Scenarios H0 H1

Cache Memory Cache Memory

Ideal case 100% 0% 92% 8%
FSA 99% 1% 97% 3%
SSA 95% 5% 88% 12%
ASA 97% 3% 96% 4%

Finally the number of traces needed for the recovery of the key are presented
in Figures 4,5. As for the attack scenario success rates, our experiments in the
native execution setting show that the SSA yields higher success rate than the
FSA and the ASA which require 3,000, 25,000 and 30,000 encryptions ,respec-
tively. Also, the variance distinguisher works better in native setting than the
other two distinguishers. For other attack scenarios e.g. the ASA, the mean dis-
tinguisher works the best, see Figure 5(b). Note that, since ASA is the most
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(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 4. Comparison of results in native execution for FSA scenario for different dis-
tinguishers based on the miss counter (a), difference of means (b) and difference of
variances (c).

(a) Ctr Dist. (b) Mean Dist. (c) Var. Dist.

Fig. 5. Comparison of results in native execution for the SSA for different distinguishers
based on the miss counter (a), difference of means (b) and difference of variances (c).

realistic scenario, it requires more encryption samples than the other two, most
notably compared to the SSA where only 3,000 encryption samples are needed.

5.1 Cross-VM Execution Results

In the cross-VM setting, the FSA scenario requires 30,000 encryptions to recover
the full key using the miss counter hypothesis as seen in Figure 6(a). In the
same setting, 50,000 encryptions are needed when the difference of means dis-
tinguisher is used as in Figure 6(d). As for the SSA, only 10,000 encryptions are
enough to recover the full key using the mean distinguisher in Figure 6(b). If
the miss counter distinguisher is used instead of the mean distinguisher, 40,000
encryptions are needed as seen in Figure 6(e).

For the ASA scenario, 30,000 encryptions are enough to recover the full key
using miss-counter and mean distinguishers as seen in Figures 6(c), 6(f). Also,
when we compare different distinguisher methods in the cross-VM setting for
different attack scenarios, we see that the difference of means distinguisher works
better than the miss-counter distinguisher for the most successful attack which
is the SSA. While the miss-counter distinguisher gives better results for the FSA,
the two distinguishers have the same impact on the results for the ASA which is
the most realistic attack scenario.

We would like to note that the difference of means and the difference of vari-
ances distinguishers work better in the SSA and ASA scenarios, whereas the miss
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(a) FSA (b) SSA (c) ASA

(d) FSA (e) SSA (f) ASA

Fig. 6. Results in cross-VM execution for different attack scenarios using the miss
counter distinguisher FSA (a) SSA (b) ASA (c) and the means distinguisher FSA (d)
SSA (e) and ASA (f).

counter yields better results for the FSA. Moreover, the main advantage of using
the variance and mean distinguishers is that they do not need an architecture
dependent threshold, whereas the miss counter approach needs the access time
distribution of the cache hierarchy.

Also note that the improvement of SSA is due to flushing during the AES
execution which yields lower noise in the reloading stage. As for the ASA, we
would like to emphasize that the higher number of encryptions requirement is due
to the more realistic nature of the attack setting i.e. the lack of synchronization
between the server and the spy process. Finally, we would like to remark that
only 15 seconds are enough to recover the whole key in SSA scenario, which
to the best of our knowledge is the fastest working attack in a realistic cross-VM
setting without the scheduler exploitation.

6 Conclusion

In conclusion, we would like to remark that in this work, for the first time we have
accomplished a cache side-channel attack on AES by flushing in between rounds.
We also used an additional AES detection stage to create an asynchronous attack
setting. In addition to that, we improved upon the previous work on cross-
VM AES attacks by utilizing three different distinguishers for the key recovery.
Finally, our experiments show that among three attack scenarios, SSA works
with the minimum number of encryptions, requiring only 3,000 in the native
and 10,000 in the cross-VM setting.
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