
Faster Mask Conversion with Lookup Tables

Praveen Kumar Vadnala Johann Großschädl

University of Luxembourg

COSADE, 2015. Berlin, Germany.

1 / 62



Introduction Countermeasures

Masking

Masking

Each sensitive variable is masked with a random value

Masking- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x � r

Security can be proved

Higher-order masking

x ← (x1 � x2 � · · · � xd+1)

(x1, · · · , xd) ← rand()

xd+1 ← x � x1 � x2 � · · · � xd

2 / 62



Introduction Countermeasures

Masking

Masking

Each sensitive variable is masked with a random value

Masking- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x � r

Security can be proved

Higher-order masking

x ← (x1 � x2 � · · · � xd+1)

(x1, · · · , xd) ← rand()

xd+1 ← x � x1 � x2 � · · · � xd

3 / 62



Introduction Countermeasures

Masking

Masking

Each sensitive variable is masked with a random value

Masking- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x � r

Security can be proved

Higher-order masking

x ← (x1 � x2 � · · · � xd+1)

(x1, · · · , xd) ← rand()

xd+1 ← x � x1 � x2 � · · · � xd

4 / 62



Introduction Countermeasures

Masking

Masking

Each sensitive variable is masked with a random value

Masking- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x � r

Security can be proved

Higher-order masking

x ← (x1 � x2 � · · · � xd+1)

(x1, · · · , xd) ← rand()

xd+1 ← x � x1 � x2 � · · · � xd

5 / 62



Introduction Masking types

Masking types

Boolean masking

BM- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x ⊕ r

Arithmetic masking

AM- ��
��*

HHHHj
x (s.v.)

r (random)

A = x − r

Multiplicative masking
x : (x .r−1, r)

6 / 62



Introduction Masking types

Masking types

Boolean masking

BM- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x ⊕ r

Arithmetic masking

AM- ��
��*

HHHHj
x (s.v.)

r (random)

A = x − r

Multiplicative masking
x : (x .r−1, r)

7 / 62



Introduction Masking types

Masking types

Boolean masking

BM- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x ⊕ r

Arithmetic masking

AM- ��
��*

HHHHj
x (s.v.)

r (random)

A = x − r

Multiplicative masking
x : (x .r−1, r)

8 / 62



Introduction Masking types

Masking types

Boolean masking

BM- ��
��*

H
HHHj

x (s.v.)

r (random)

x ′ = x ⊕ r

Arithmetic masking

AM- ��
��*

HHHHj
x (s.v.)

r (random)

A = x − r

Multiplicative masking
x : (x .r−1, r)

9 / 62



Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

Convert from one form to the other
Perform addition directly on Boolean shares

10 / 62



Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

Convert from one form to the other
Perform addition directly on Boolean shares

11 / 62



Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

Convert from one form to the other
Perform addition directly on Boolean shares

12 / 62



Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

Convert from one form to the other
Perform addition directly on Boolean shares

13 / 62



Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

Convert from one form to the other
Perform addition directly on Boolean shares

14 / 62



Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

Convert from one form to the other
Perform addition directly on Boolean shares

15 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

16 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

17 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

18 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

19 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

20 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

21 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

22 / 62



Switching between Boolean and arithmetic masking

State of the art

Several solutions exist for first-order secure conversion with varying
complexity

Coron-Großschädl-Vadnala higher-order conversion

Based on Ishai-Sahai-Wagner method
Requires 2t + 1 shares for t-th order security

Vadnala-Großschädl second-order solution (LUT)

Based on generic second-order masking scheme by Prouff-Rivain
Needs only 3 shares for second-order security
Requires 2n LUT for n-bit conversion

23 / 62



Switching between Boolean and arithmetic masking

Our contributions

Improved algorithms for second-order conversion using LUT (3 shares)

First-order secure addition (also using LUT)

Over 85% improvement in execution time for second-order

Application to HMAC-SHA-1 (k = 32)

24 / 62



Switching between Boolean and arithmetic masking

Our contributions

Improved algorithms for second-order conversion using LUT (3 shares)

First-order secure addition (also using LUT)

Over 85% improvement in execution time for second-order

Application to HMAC-SHA-1 (k = 32)

25 / 62



Switching between Boolean and arithmetic masking

Our contributions

Improved algorithms for second-order conversion using LUT (3 shares)

First-order secure addition (also using LUT)

Over 85% improvement in execution time for second-order

Application to HMAC-SHA-1 (k = 32)

26 / 62



Switching between Boolean and arithmetic masking

Our contributions

Improved algorithms for second-order conversion using LUT (3 shares)

First-order secure addition (also using LUT)

Over 85% improvement in execution time for second-order

Application to HMAC-SHA-1 (k = 32)

27 / 62



Previous work

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Input: (x1 = x ⊕ x1 ⊕ x2, x2, x3)

Output: (y1, y2, S(x)⊕ y1 ⊕ y2)

Randomizes the index a′ = a⊕ r ⊕ x2 ⊕ x3 for 0 ≤ a ≤ 2n − 1

Shifts the table by y1, y2 in one step

28 / 62



Previous work

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Input: (x1 = x ⊕ x1 ⊕ x2, x2, x3)

Output: (y1, y2, S(x)⊕ y1 ⊕ y2)

Randomizes the index a′ = a⊕ r ⊕ x2 ⊕ x3 for 0 ≤ a ≤ 2n − 1

Shifts the table by y1, y2 in one step

29 / 62



Previous work

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Input: (x1 = x ⊕ x1 ⊕ x2, x2, x3)

Output: (y1, y2, S(x)⊕ y1 ⊕ y2)

Randomizes the index a′ = a⊕ r ⊕ x2 ⊕ x3 for 0 ≤ a ≤ 2n − 1

Shifts the table by y1, y2 in one step

30 / 62



Previous work

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

S(0)

S(1)

S(2n − 1)

...

...

r ∈ {0, 1}n r′ = (r ⊕ x2)⊕ x3
x = x1 ⊕ x2 ⊕ x3y1, y2 ∈ {0, 1}n

...

...

T (a′) = ((S(x1 ⊕ a)⊕ y1)⊕ y2)

T (a′)

a′ = a⊕ r′

...

S(x⊕ r)⊕ y1 ⊕ y2

S(x⊕ r ⊕ 2n − 1)⊕ y1 ⊕ y2

S(x⊕ r ⊕ 1)⊕ y1 ⊕ y2

S(x1)⊕ y1 ⊕ y2

31 / 62



Previous work

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

S(0)

S(1)

S(2n−1)

...

r ∈ {0, 1}n r′ = (r ⊕ x2)⊕ x3
x = x1 ⊕ x2 ⊕ x3y1, y2 ∈ {0, 1}n

...

...

S(x⊕ r)⊕ y1 ⊕ y2

S(x⊕ r ⊕ 2n−1)⊕ y1 ⊕ y2

S(x⊕ r ⊕ 1)⊕ y1 ⊕ y2

...

S(x)⊕ y1 ⊕ y2
S(x2 ⊕ x3)

T (r)

a = x2 ⊕ x3, a
′ = r

T (r) = S(x1 ⊕ x2 ⊕ x3)⊕ y1 ⊕ y2
32 / 62



Previous work

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Algorithm 1 Sec2O-masking

Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:
(y1, y2) ∈ F2m , and an (n,m) S-box lookup function S

Output: Masked S-box output: S(x)⊕ y1 ⊕ y2

1: r ← Rand(n)
2: r ′ ← (r ⊕ x2)⊕ x3

3: for a := 0 to 2n − 1 do
4: a′ ← a⊕ r ′

5: T [a′]← ((S(x1 ⊕ a)⊕ y1)⊕ y2)
6: end for
7: return T [r ]

33 / 62



Previous work

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

Input: x1 = x ⊕ x2 ⊕ x3, x2, y3

Output: A1 = x − A2 − A3,A2,A3

Generate A2,A3 randomly
Compute A1 = x − A2 − A3 using modified LUT

T (a′) = (x1 ⊕ a)− A2 − A3

Arithmetic to Boolean conversion is obtained in the same way

34 / 62



Previous work

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

Input: x1 = x ⊕ x2 ⊕ x3, x2, y3

Output: A1 = x − A2 − A3,A2,A3

Generate A2,A3 randomly
Compute A1 = x − A2 − A3 using modified LUT

T (a′) = (x1 ⊕ a)− A2 − A3

Arithmetic to Boolean conversion is obtained in the same way

35 / 62



Previous work

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

Input: x1 = x ⊕ x2 ⊕ x3, x2, y3

Output: A1 = x − A2 − A3,A2,A3

Generate A2,A3 randomly
Compute A1 = x − A2 − A3 using modified LUT

T (a′) = (x1 ⊕ a)− A2 − A3

Arithmetic to Boolean conversion is obtained in the same way

36 / 62



Previous work

Vadnala-Großschädl Scheme

Boolean to arithmetic conversion

Input: x1 = x ⊕ x2 ⊕ x3, x2, y3

Output: A1 = x − A2 − A3,A2,A3

Generate A2,A3 randomly
Compute A1 = x − A2 − A3 using modified LUT

T (a′) = (x1 ⊕ a)− A2 − A3

Arithmetic to Boolean conversion is obtained in the same way

37 / 62



Efficient Second-order secure mask conversion

Improved B→A conversion algorithm

Use divide-and-conquer

Divide each share into p parts of l bits each; n = p · l
Convert each part separately using previous approach

Problem: Carries

38 / 62



Efficient Second-order secure mask conversion

Improved B→A conversion algorithm

Use divide-and-conquer

Divide each share into p parts of l bits each; n = p · l
Convert each part separately using previous approach

Problem: Carries

39 / 62



Efficient Second-order secure mask conversion

Improved B→A conversion algorithm

Use divide-and-conquer

Divide each share into p parts of l bits each; n = p · l
Convert each part separately using previous approach

Problem: Carries

40 / 62



Efficient Second-order secure mask conversion

Improved B→A conversion algorithm

Use divide-and-conquer

Divide each share into p parts of l bits each; n = p · l
Convert each part separately using previous approach

Problem: Carries

41 / 62



Efficient Second-order secure mask conversion

Handling carries

Original equation: (A1)i = x i − A2 − A3 (The subtraction here are
performed modulo 2l instead of 2n)

xi − Ai
2 − Ai

3

ci+11

ci+12

Ai
1

New equation: (A1)i = x i − c i1 − A2 − c i2 − A3

Output carries of word i =⇒ Input carries of word i + 1

42 / 62



Efficient Second-order secure mask conversion

Handling carries

Original equation: (A1)i = x i − A2 − A3 (The subtraction here are
performed modulo 2l instead of 2n)

xi − Ai
2 − Ai

3

ci+11

ci+12

Ai
1

New equation: (A1)i = x i − c i1 − A2 − c i2 − A3

Output carries of word i =⇒ Input carries of word i + 1

43 / 62



Efficient Second-order secure mask conversion

Handling carries

Original equation: (A1)i = x i − A2 − A3 (The subtraction here are
performed modulo 2l instead of 2n)

xi − Ai
2 − Ai

3

ci+11

ci+12

Ai
1

New equation: (A1)i = x i − c i1 − A2 − c i2 − A3

Output carries of word i =⇒ Input carries of word i + 1

44 / 62



Efficient Second-order secure mask conversion

Handling carries

Original equation: (A1)i = x i − A2 − A3 (The subtraction here are
performed modulo 2l instead of 2n)

xi − Ai
2 − Ai

3

ci+11

ci+12

Ai
1

New equation: (A1)i = x i − c i1 − A2 − c i2 − A3

Output carries of word i =⇒ Input carries of word i + 1

45 / 62



Efficient Second-order secure mask conversion

Computing carries

New equation: (A1)i = x i − c i1 − A2 − c i2 − A3

(A1)
i = xi − ci1 − A2 − ci2 − A3

xi − ci1 − A2

ci+11

46 / 62



Efficient Second-order secure mask conversion

Protecting carries

Problem: Carries can still leak

Solution: Apply generic countermeasure again

Total of three LUTs

T1 : 2l+2 · l (Ai
1)

T2 : 2l+2 · 1 (c i+1
1 )

T3 : 2l+2 · 1 (c i+1
2 )

Complexity: O(2l+2 · p) (Earlier scheme: O(2l ·p) )

47 / 62



Efficient Second-order secure mask conversion

Protecting carries

Problem: Carries can still leak

Solution: Apply generic countermeasure again

Total of three LUTs

T1 : 2l+2 · l (Ai
1)

T2 : 2l+2 · 1 (c i+1
1 )

T3 : 2l+2 · 1 (c i+1
2 )

Complexity: O(2l+2 · p) (Earlier scheme: O(2l ·p) )

48 / 62



Efficient Second-order secure mask conversion

Protecting carries

Problem: Carries can still leak

Solution: Apply generic countermeasure again

Total of three LUTs

T1 : 2l+2 · l (Ai
1)

T2 : 2l+2 · 1 (c i+1
1 )

T3 : 2l+2 · 1 (c i+1
2 )

Complexity: O(2l+2 · p) (Earlier scheme: O(2l ·p) )

49 / 62



Efficient Second-order secure mask conversion

Protecting carries

Problem: Carries can still leak

Solution: Apply generic countermeasure again

Total of three LUTs

T1 : 2l+2 · l (Ai
1)

T2 : 2l+2 · 1 (c i+1
1 )

T3 : 2l+2 · 1 (c i+1
2 )

Complexity: O(2l+2 · p) (Earlier scheme: O(2l ·p) )

50 / 62



Efficient Second-order secure mask conversion

Security Analysis

For securing one word: Similar to Prouff-Rivian

Every pair is independent of the sensitive variable

For the full algorithm: Mathematical induction

51 / 62



Efficient Second-order secure mask conversion

Security Analysis

For securing one word: Similar to Prouff-Rivian

Every pair is independent of the sensitive variable

For the full algorithm: Mathematical induction

52 / 62



Efficient Second-order secure mask conversion

Security Analysis

For securing one word: Similar to Prouff-Rivian

Every pair is independent of the sensitive variable

For the full algorithm: Mathematical induction

53 / 62



Implementation results

Implementation results

Algorithm ` Time Memory rand
second-order conversion

Algorithm B→A 1 12186 8 226
Algorithm B→A 2 11030 16 114
Algorithm B→A 4 19244 64 58
Algorithm A→B 1 10557 8 226
Algorithm A→B 2 9059 16 114
Algorithm A→B 4 15370 64 58

CGV A→ B - 54060 - 484
CGV B → A - 81005 - 822

first-order addition
KRJ addition - 371 - 1
Our algorithm 4 294 512 3

Table : Implementation results for n = 32 on a 32-bit microcontroller.

54 / 62



Implementation results

Implementation results

0 2 4 6 8

·104

Our scheme l = 1

Our scheme l = 2

Our scheme l = 4

CGV scheme

Execution Time

B → A
A → B

55 / 62



Implementation results

Application to HMAC-SHA-1

Algorithm ` Time PF
HMAC-SHA-1 - 104 1

second-order conversion
Our solution 1 9715 95
Our solution 2 8917 85
Our solution 4 15329 147

CGV - 62051 596
first-order addition

KRJ addition - 328 3.1
Our solution 4 308 2.9

Table : Running time in thousands of clock cycles and penalty factor compared to
the unmasked HMAC-SHA-1 implementation

56 / 62



Implementation results

Application to HMAC-SHA-1

100 200 300 400 500 600

Our scheme l = 1

Our scheme l = 2

Our scheme l = 4

CGV scheme

Penalty factor

HMAC-SHA-1

57 / 62



Implementation results

Conclusions

Improved algorithms for second-order conversion

Requires only 3 shares and works for larger conversion size

First-order masked addition using LUT

Significant improvement (85%)in execution time for second-order
conversion

Alternative solution for first-order addition

58 / 62



Implementation results

Conclusions

Improved algorithms for second-order conversion

Requires only 3 shares and works for larger conversion size

First-order masked addition using LUT

Significant improvement (85%)in execution time for second-order
conversion

Alternative solution for first-order addition

59 / 62



Implementation results

Conclusions

Improved algorithms for second-order conversion

Requires only 3 shares and works for larger conversion size

First-order masked addition using LUT

Significant improvement (85%)in execution time for second-order
conversion

Alternative solution for first-order addition

60 / 62



Implementation results

Conclusions

Improved algorithms for second-order conversion

Requires only 3 shares and works for larger conversion size

First-order masked addition using LUT

Significant improvement (85%)in execution time for second-order
conversion

Alternative solution for first-order addition

61 / 62



Implementation results

Conclusions

Improved algorithms for second-order conversion

Requires only 3 shares and works for larger conversion size

First-order masked addition using LUT

Significant improvement (85%)in execution time for second-order
conversion

Alternative solution for first-order addition

62 / 62


	Introduction
	Side channel attacks
	Countermeasures
	Masking types

	Switching between Boolean and arithmetic masking
	Previous work
	Efficient Second-order secure mask conversion
	Implementation results

