Faster Mask Conversion with Lookup Tables

Praveen Kumar Vadnala Johann GroBschadl

University of Luxembourg

COSADE, 2015. Berlin, Germany.

62

Countermeasures
Masking

o Masking

o Each sensitive variable is masked with a random value

62

Introduction Countermeasures

Masking

o Masking
o Each sensitive variable is masked with a random value
r (random)
—— Masking
x (s.v.)
X' =x0Or

Introduction Countermeasures

Masking

o Masking
o Each sensitive variable is masked with a random value
r (random)
—— Masking
x (s.v.)
X' =x0Or

e Security can be proved

Introduction Countermeasures

Masking
o Masking
o Each sensitive variable is masked with a random value
r (random)
—— Masking
x (s.v.)
X' =x0or

e Security can be proved

@ Higher-order masking

X — (x1O0x0- O Xd+1)
(Xl, s ,Xd) — rand()
Xdr1 & XOx10x0- - OXxy

5/62

EEEG
Masking types

@ Boolean masking

62

Masking types

@ Boolean masking

BM

r (random)

X =x®r

62

Introduction Masking types

Masking types

@ Boolean masking

x (s.v.) BM

@ Arithmetic masking

— AM

r (random)

X =x®r

r (random)

8/62

Masking types
Masking types

@ Boolean masking

r (random)
— BM
x (s.v.)
X' =x@r
@ Arithmetic masking
r (random)
— AM
x (s.v.)
A=x—r

o Multiplicative masking
x:(x.r7i,r)

9/62

Mask conversion

@ Conversion problem

10/62

Mask conversion

@ Conversion problem

@ This talk : Conversion between arithmetic and Boolean masking

11/62

Introduction Masking types

Mask conversion

@ Conversion problem
@ This talk : Conversion between arithmetic and Boolean masking
@ Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

12 /62

Introduction Masking types

Mask conversion

Conversion problem

This talk : Conversion between arithmetic and Boolean masking
Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
Two approaches to find solution

13 /62

Introduction Masking types

Mask conversion

Conversion problem
This talk : Conversion between arithmetic and Boolean masking
Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution
e Convert from one form to the other

14 /62

Introduction Masking types

Mask conversion

Conversion problem
This talk : Conversion between arithmetic and Boolean masking
Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

Two approaches to find solution

e Convert from one form to the other
e Perform addition directly on Boolean shares

15 /62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity

16 /62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion

17 /62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion
o Based on Ishai-Sahai-Wagner method

18 /62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion

o Based on Ishai-Sahai-Wagner method
o Requires 2t + 1 shares for t-th order security

19/62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion

o Based on Ishai-Sahai-Wagner method
o Requires 2t + 1 shares for t-th order security

e Vadnala-GroBschadl second-order solution (LUT)

20 /62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion

o Based on Ishai-Sahai-Wagner method
o Requires 2t + 1 shares for t-th order security

@ Vadnala-GroBschadl second-order solution (LUT)
o Based on generic second-order masking scheme by Prouff-Rivain

21/62

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion
o Based on Ishai-Sahai-Wagner method
o Requires 2t + 1 shares for t-th order security
@ Vadnala-GroBschadl second-order solution (LUT)

o Based on generic second-order masking scheme by Prouff-Rivain
o Needs only 3 shares for second-order security

N
N

=)

(]

State of the art

@ Several solutions exist for first-order secure conversion with varying
complexity
@ Coron-GroBschadl-Vadnala higher-order conversion
o Based on Ishai-Sahai-Wagner method
o Requires 2t + 1 shares for t-th order security
@ Vadnala-GroBschadl second-order solution (LUT)

o Based on generic second-order masking scheme by Prouff-Rivain
o Needs only 3 shares for second-order security
e Requires 2" LUT for n-bit conversion

Switching between Boolean and arithmetic masking

Our contributions

@ Improved algorithms for second-order conversion using LUT (3 shares)

24 /62

Switching between Boolean and arithmetic masking

Our contributions

@ Improved algorithms for second-order conversion using LUT (3 shares)

o First-order secure addition (also using LUT)

25 /62

Switching between Boolean and arithmetic masking

Our contributions

@ Improved algorithms for second-order conversion using LUT (3 shares)
o First-order secure addition (also using LUT)

@ Over 85% improvement in execution time for second-order

26 /62

Switching between Boolean and arithmetic masking

Our contributions

Improved algorithms for second-order conversion using LUT (3 shares)
First-order secure addition (also using LUT)

Over 85% improvement in execution time for second-order
Application to HMAC-SHA-1 (k = 32)

27 /62

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

e Input: (x1 = x B x1 B x2, X2, X3)
° OUtPUt: (Y17)’2a5(x) Dn 69.)/2)

28 /62

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

e Input: (x1 = x B x1 B x2, X2, X3)
° OUtPUt: (Y17)’2a5(x) Dn 69.)/2)
@ Randomizes the index 8 =a@®r®xo ®xz3for0 < a<2" -1

29 /62

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Input: (x1 = x D x1 B x2, X2, X3)

Output: (y1,y2,S(x) ® y1 @ y2)

Randomizes the index @ = a @ r®xo G xz for 0 <a< 2" -1
Shifts the table by y1, y» in one step

30 /62

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

re{0,1}" = (r® o) ® x3

y,y2 € {0,1}" T=11DryD 3

S(0) SEer)on @y,

S(1) Seerel)on ey
S(a1) @y @y

52 —1) S(z0r@2" - 1) Dy O ye

T(a) = ((S(z1 ®a) ®y1) S y2)

31/62

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

re{0,1}" = (r ®zo) ® w3

y1, 92 € {0,1}" T =21 D w2 D T3

S(0) Ser)®y dy

S(1) Szdr®l)®y dy
T(r)

: / S(I) Dy By
S(zs ® w3)

3(2"’71) S(z®r®2" 1) By © yo

azxg@xg,a’:r

T(r)=Sx1 ®xo®x3) By & Yo

32/62

Generic 20-secure masking (Prouff-Rivain FSE, 2008)

Algorithm 1 Sec20-masking

Input: Three input shares: (x; = x & xo B x3,%2,x3) € Fan, two output shares:
(1, y2) € Fom, and an (n, m) S-box lookup function S

Output: Masked S-box output: S(x) ® y1 @ y»

r <— Rand(n)

' (rdox) @ xs

:fora:=0to2"—1do
a+—adpr
T[]« ((S(a ® a) @ y1) @ y2)

end for

return T|[r]

Noas b

33/62

Vadnala-GroBschadl Scheme

@ Boolean to arithmetic conversion

o Input: x; = x @ x2 © X3, %2,)3
o Output: A; =x — Ay — A3, Az, A3

34 /62

Vadnala-GroBschadl Scheme

@ Boolean to arithmetic conversion

o Input: x; = x @ x2 © X3, %2,)3
o Output: A; =x — Ay — A3, Az, A3
o Generate Ay, A3 randomly

35/62

Vadnala-GroBschadl Scheme

@ Boolean to arithmetic conversion

Input: x; = x& x2 D X3, X0, 3

° OUtpUtZ Al =x— A, — A3, A, A

o Generate Ay, A3 randomly

o Compute A; = x — Ay — A3z using modified LUT

T(@)=(xa®a)—Ar— A3

36 /62

Vadnala-GroBschadl Scheme

@ Boolean to arithmetic conversion

Input: x; = x& x2 D X3, X0, 3

o Output: A; =x — Ay — A3, Az, A3

o Generate Ay, A3 randomly

o Compute A; = x — Ay — A3z using modified LUT
T(@)=(a®a)— A — A

@ Arithmetic to Boolean conversion is obtained in the same way

37/62

Efficient Second-order secure mask conversion

Improved B—A conversion algorithm

@ Use divide-and-conquer

38/62

Efficient Second-order secure mask conversion

Improved B—A conversion algorithm

@ Use divide-and-conquer

@ Divide each share into p parts of / bits each; n=p-/

39 /62

Efficient Second-order secure mask conversion

Improved B—A conversion algorithm

@ Use divide-and-conquer
@ Divide each share into p parts of / bits each; n=p-/

@ Convert each part separately using previous approach

40 /62

Efficient Second-order secure mask conversion

Improved B—A conversion algorithm

Use divide-and-conquer
Divide each share into p parts of / bits each; n=p -/

Convert each part separately using previous approach

Problem: Carries

41 /62

Efficient Second-order secure mask conversion

Handling carries

e Original equation: (A1)’ = x' — Ay — A3 (The subtraction here are
performed modulo 2/ instead of 2")

c%*%

i+1

42 /62

Efficient Second-order secure mask conversion

Handling carries

e Original equation: (A1)’ = x' — Ay — A3 (The subtraction here are
performed modulo 2/ instead of 2")

i — Ab— A}

-

€] «—

i+1

) ——— |

43 /62

Efficient Second-order secure mask conversion

Handling carries

e Original equation: (A1)’ = x' — Ay — A3 (The subtraction here are
performed modulo 2/ instead of 2")

i — Ab— A}

-

€] «—

i+1

) ——— |

o New equation: (A1) = x' —cf — Ay — ¢} — As

44 /62

Efficient Second-order secure mask conversion

Handling carries

e Original equation: (A1)’ = x' — Ay — A3 (The subtraction here are
performed modulo 2/ instead of 2")

at — Ay — Al

-

€] «—

i+1

) ——— |

4

Al
o New equation: (A1) = x' —cf — Ay — ¢} — As

@ Output carries of word i = Input carries of word / + 1

45 /62

Efficient Second-order secure mask conversion

Computing carries

o New equation: (A;)' = x' — C{ —Ax— Cﬁ — Az

i+

(A1) =2’ — ¢} — Ay

—C%—Ag

|

xi—cﬁ—Ag

—

46 /62

Efficient Second-order secure mask conversion

Protecting carries

@ Problem: Carries can still leak

47 /62

Efficient Second-order secure mask conversion

Protecting carries

@ Problem: Carries can still leak

@ Solution: Apply generic countermeasure again

48 /62

Efficient Second-order secure mask conversion

Protecting carries

@ Problem: Carries can still leak
@ Solution: Apply generic countermeasure again
@ Total of three LUTs

Ty o 220 (AD
T, : 2*2.1 (c{_“)
T3 @ 221 (™)

49 /62

Efficient Second-order secure mask conversion

Protecting carries

@ Problem: Carries can still leak

@ Solution: Apply generic countermeasure again

o Total of three LUTs
Ty o 220 (AD
T, : 221 (™)
T3 @ 221 (™)

o Complexity: O(2/*2 - p) (Earlier scheme: O(2/P))

50 /62

Security Analysis

@ For securing one word: Similar to Prouff-Rivian

51/62

Security Analysis

@ For securing one word: Similar to Prouff-Rivian

@ Every pair is independent of the sensitive variable

52 /62

Security Analysis

@ For securing one word: Similar to Prouff-Rivian
@ Every pair is independent of the sensitive variable

o For the full algorithm: Mathematical induction

53 /62

Implementation results

Implementation results

Algorithm \ l \ Time \ Memory \ rand
second-order conversion
Algorithm B—A | 1 | 12186 8 226
Algorithm B—A | 2 | 11030 16 114
Algorithm B—A | 4 | 19244 64 58
Algorithm A—B | 1 | 10557 8 226
Algorithm A—B | 2 | 9059 16 114
Algorithm A—B | 4 | 15370 64 58
CGV A— B - | 54060 - 484
CGVB— A - | 81005 - 822
first-order addition
KRJ addition - 371 - 1
Our algorithm | 4 | 294 512

Table : Implementation results for n = 32 on a 32-bit microcontroller.

Implementation results

Implementation results

=
GV scheme - S
Our schemne { — 4 g
Our scheme | — 2 g
Our scheme I = 1 g
0 2 4 6 8

Execution Time 104

55/

62

Application to HMAC-SHA-1

Algorithm £ | Time | PF

HMAC-SHA-1 | - 104 1
second-order conversion

Our solution | 1| 9715 | 95
Our solution | 2 | 8917 85

Our solution | 4 | 15329 | 147

CGV - | 62051 | 596

first-order addition
KRJ addition | - 328 3.1
Our solution | 4 | 308 2.9

Table : Running time in thousands of clock cycles and penalty factor compared to

the unmasked HMAC-SHA-1 implementation

Implementation results

Application to HMAC-SHA-1

CGV scheme

Our scheme [= 4

Our scheme | = 2

Our scheme | =1

—

=

[
1(‘)0 2(‘]0 3(‘]0 /1(‘]0 5(‘)(] G(‘)O

Penalty factor

57

62

Implementation results

Conclusions

@ Improved algorithms for second-order conversion

58 /62

Implementation results

Conclusions

@ Improved algorithms for second-order conversion

@ Requires only 3 shares and works for larger conversion size

59 /62

Implementation results

Conclusions

@ Improved algorithms for second-order conversion
@ Requires only 3 shares and works for larger conversion size

@ First-order masked addition using LUT

60 /62

Implementation results

Conclusions

Improved algorithms for second-order conversion
Requires only 3 shares and works for larger conversion size
First-order masked addition using LUT

Significant improvement (85%)in execution time for second-order
conversion

61 /62

Implementation results

Conclusions

Improved algorithms for second-order conversion
Requires only 3 shares and works for larger conversion size

First-order masked addition using LUT

e 6 o6 o

Significant improvement (85%)in execution time for second-order
conversion

Alternative solution for first-order addition

62 /62

	Introduction
	Side channel attacks
	Countermeasures
	Masking types

	Switching between Boolean and arithmetic masking
	Previous work
	Efficient Second-order secure mask conversion
	Implementation results

