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Code-based Cryptography

Introduced in 1978 by McEliece

Advantages

Very fast encryption and fast decryption, faster than RSA

No need for crypto coprocessors

Based on NP-hard problem (Syndrome Decoding Problem)

Post-quantum security

Disadvantages

Big public keys (≈ 100 Kbits)

Few side-channel analysis for secure implementation ...
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Code based Cryptography

Syndrome Decoding Problem

plaintext m∈Fk
q(

0,. . . ,1

) public key Gpk∈F
k×n
q Gpk

+

error e∈Fn
q(

1,0,. . . ,0,1

)
=

ciphertext c∈Fn
q(

1,0,. . . ,1,1

)
Find m, e knowing Gpk , c: NP-complete for Gpk random.

Definitions

A support: x = (x0, . . . , xn−1) ∈ Fn
qm , with xi 6= xj

A polynomial g(x) ∈ Fqm [x ] of degree t with g(xi ) 6= 0.

A Goppa code G (x, g) is described by the secret elements x and g(z)

Tt a t-decoder for G (x, g), using the secret elements x and g(z)

G a generator matrix of G (x, g)
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McEliece Public-Key Encryption

PARAMETERS : Field size q = 2
PUBLIC KEY : Gpk = SGP with

S ∈ F(n−k)×(n−k)
q random matrix

P ∈ Fn×n
q a random permutation matrix.

PRIVATE KEY : the t-decoder Tt , S and P

Algorithm 1 McEliece Cryptosystem

ENCRYPT

1: Input m ∈ Fk
q .

2: Generate random e ∈ Fn
q with

wH (e) = t .
3: Output c = mGpk + e.

DECRYPT

1: Input c ∈ Fn
q .

2: Compute m̄ = Tt (cP−1)).
3: If decoding succeeds, output

S−1m̄, else output ⊥.
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The Decoder

The main steps are :

Compute the polynomial syndrome S(z), a polynomial deduced from c,
but depending only on e.

Use the Extended Euclidean Algorithm (EEA) to compute the error locator
polynomial σ(z),

roots of σ(z) are related to the support elements xij in the error positions ij .

Find the roots of σ(z). Here e ∈ Fn
2, so eij 6= 0 implies that eij = 1.

Alternant Decoder: generic for Alternant codes

1 EEA(z2t ,SAlt,e(z), t)

Patterson Decoder: specific for binary Goppa codes

1 EEA(g(z),SGop,e(z), 0)

2 EEA(g(z), τ, bt/2c)

with τ =
√

SGop,e(z)−1 + 1 mod g(z)
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Extended Euclidean Algorithm

Algorithm 2 Extended Euclidean Algorithm (EEA)

Input: a(z), b(z), deg(a) > deg(b), dfin
Output: u(z), r(z) with b(z)u(z) = r(z) mod a(z) and deg(r) 6 dfin

1: r−1(z)← a(z), r0(z)← b(z),u−1(z)← 1, u0(z)← 0,
2: i ← 0
3: while deg(ri (z)) > dfin do
4: i ← i + 1
5: qi ← ri−2(z)/ri−1(z)

6: ri ← ri−2(z)− qi (z)ri−1(z)
7: ui ← ui−2(z)− qi (z)ui−1(z)
8: end while
9: N ← i

10: return uN (z), rN (z)

The number of steps in the ”while” depends on inputs a(z) and b(z).

Complexity is in O(deg(a)2) fields multiplications.
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Motivation and attacks

Difficulties for a secure implementation

The operation flow of the decryption is strongly influenced by the error vector

No information is known about the error vector before determining σe

The observed or manipulated device may leak information before any detection of
the attack

Various attacks when using an unprotected decryption:

on the messages (R. Avanzi et al., A. Shoufan et al.)

on the secret key (F. Strenzke)

No satisfactory countermeasure.

This work

Shows the need for an efficient countermeasure.

Proposes such countermeasure.
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Decryption oracle timing attacks

Algorithm 3 Framework for key-recovery attacks on a decryption device. (Strenzke)

INPUT: A decryption device D, public encryption key Gpub .
OUTPUT: The secret support x.

1: Choose w well-chosen error weights
2: for (i1, . . . , iw ) subset of {0, . . . , n − 1} do
3: Pick e = (0, . . . , ei1 , . . . , eiw , . . . , 0) with wH (e) = w .
4: Request decryption D(e).
5: Perform timing or power consumption analysis of D(e).
6: If EEA is faster than average, deduce a polynomial condition on xi1 , . . . , xiw
7: end for
8: Solve the non-linear system of all the collected equations.
9: return Secret support x = (x0, . . . , xn−1).

13/04/2015 Toward Secure Implementation of McEliece Decryption 9 / 17



Secret decryption key recovery attacks
Lemma (Patterson decoder)

Let G (x, g(z)) be a binary Goppa code and Se(z) the pol. syndrome associated to an
error e with wH (e) 6 deg(g)/2− 1. Write Se(z) = ωe(z)

σe(z)
mod g(z). The number of

iterations of the while loop (EEA(g(z),Se(z), 0), EEA(g(z), τ(z), bt/2c)) = (NI , NK ).

NI 6 deg(ωe(z)) + wH (e) and NK 6 deg(ωe(z))/2. (1)

Strenzke’s attacks in brief

2010 : Observe NK for error weights w = 4.

ωe(z) = (xi1 + xi2 + xi3 + xi4 )︸ ︷︷ ︸
ω1(e)

z2 + xi1 xi2 xi3 + xi1 xi2 xi4 + xi1 xi3 xi4 + xi2 xi3 xi4︸ ︷︷ ︸
ω3(e)

.

If NK is smaller than average⇒ xi1 + xi2 + xi3 + xi4 = 0
No practical attack, countermeasure proposed.

2011 : Observe NI for w = 6 =⇒ practical attack. Countermeasure proposed.

In this paper : Extended attack bypassing previous countermeasure

Combination of first and second EEA: observe couples (NI ,NK ) for errors with w = 8
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Extended Euclidean Algorithm

EEA with a flow of operations independent of the error vector

Discards previous message-recovery attacks

Discards previous key-recovery attacks

Inspired by a work of Berlekamp (VLSI)

No clear completeness proofs found in the literature

Never proposed for McEliece

Fully efficient only for the Alternant decoder

13/04/2015 Toward Secure Implementation of McEliece Decryption 11 / 17



Extended Euclidean Algorithm

EEA with a flow of operations independent of the error vector

Discards previous message-recovery attacks

Discards previous key-recovery attacks

Inspired by a work of Berlekamp (VLSI)

No clear completeness proofs found in the literature

Never proposed for McEliece

Fully efficient only for the Alternant decoder

13/04/2015 Toward Secure Implementation of McEliece Decryption 11 / 17



Unrolling Euclidean division
Step 1: Decomposition of each euclidean division into a number of polynomial
subtractions depending only on δi = deg(qi (z)) = deg(ri−2)− deg(ri−1).

1: while deg(ri (z)) > dfin do
2: i ← i + 1
3: qi ← ri−2(z)/ri−1(z)

4: ri ← ri−2(z)− qi (z)ri−1(z)
5: end while

z4 α11z2 +α7z +α11

α11(z4)− z2(α11z2 + α7z + α11)

α7z3 +α11z2

α11(α7z3 + α11z2)− α7z(α11z2 + α7z + α11)

αz2 +α3z
α11(αz2 + α3z)− α(α11z2 + α7z + α11)

α6z +α12

z4 = (α4z2+z+α13)(α11z2+α7z+α11)+(α3z+α9)

Lemma

For all i = −1, . . . ,N, there exists λi ∈ F∗qm such that: Ri (z) = λi ri (z),

As a consequence, ∆i = deg(Ri−2)− deg(Ri−1) = deg(ri−2)− deg(ri−1) = δi .

Problems:

Still a while loop.

Polynomial shift changes.
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Regular polynomial shift pattern

Step 2: multiply the operand by z at each for iteration (”re-aligning”).

z4 = (α4z2 + z + α13)(α11z2 + α7z + α11) + (α3z + α9)

z4 α11z2 +α7z +α11

α11(z4)− z2(α11z2 + α7z + α11)

α7z3 +α11z2

α11(α7z3 + α11z2)− α7z(α11z2 + α7z + α11)

αz2 +α3z
α11(αz2 + α3z)− α(α11z2 + α7z + α11)

α6z +α12

z4 α11z2 + α7z + α11

z(0× (z4)− 1× (α11z2 + α7z + α11)

α11z3 + α7z2 + α11z1

z(0× (z4)− 1× (α11z3 + α7z2 + α11z1))

α11z4 + α7z3 + α11z2

z(α11(z4)− 1× (α11z4 + α7z3 + α11z2))

α7z4 + α11z3

z(α7(α11z4 + α7z3 + α11z2)− α11(α7z4 + α11z3))

αz4 + α3z3

z(α(α11z4 + α7z3 + α11z2)− α11(αz4 + α3z3))

α6z4 + α12z3
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Regular polynomial shift pattern
1: while deg(Ri (z)) > dfin do
2: i ← i + 1
3: R(0)

i−2(z)← Ri−2(z),
βi ← LC(Ri−1(z))

4: ∆i ← deg(Ri−2)− deg(Ri−1)
5: for j = 0, . . . ,∆i do
6: αi,j ← R(j)

i,di−2−j ,

7: R(j+1)
i−2 (z)←

βi R
(j)
i−2(z)− αi,j z∆i−j Ri−1(z)

8: end for
9: Ri (z)← R(∆i +1)

i−2 (z),
10: end while

1: for i = 1, . . . ,N do
2: R̃(0)

i−2(z)← R̃i−2(z),
3: for j = 1, . . . ,∆i − 1 do
4: R̃i−1(z)← zR̃i−1(z)

 L1
5: end for
6: for j = 0, . . . ,∆i do
7: α̃i,j ← R̃(j)

i,d , β̃i ← R̃i−1,d .

8: R̃(j+1)
i−2 (z)←

z
(
β̃i R̃

(j)
i−2(z)− α̃i,j R̃i−1(z)

)


L2

9: end for
10: R̃i (z)← R̃(∆i +1)

i−2 (z),
11: end for

Lemma

For all i = 1, . . . ,N, (R̃i−1(z), R̃i (z)) = (zd−di−1 Ri−1(z), zd−di−1+1Ri (z)).

Problems (pedagogical algorithm):

Find N

Find the ∆i during the execution
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3: R(0)

i−2(z)← Ri−2(z),
βi ← LC(Ri−1(z))

4: ∆i ← deg(Ri−2)− deg(Ri−1)
5: for j = 0, . . . ,∆i do
6: αi,j ← R(j)

i,di−2−j ,

7: R(j+1)
i−2 (z)←

βi R
(j)
i−2(z)− αi,j z∆i−j Ri−1(z)
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9: Ri (z)← R(∆i +1)

i−2 (z),
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4: R̃i−1(z)← zR̃i−1(z)

 L1
5: end for
6: for j = 0, . . . ,∆i do
7: α̃i,j ← R̃(j)

i,d , β̃i ← R̃i−1,d .

8: R̃(j+1)
i−2 (z)←

z
(
β̃i R̃

(j)
i−2(z)− α̃i,j R̃i−1(z)

)


L2

9: end for
10: R̃i (z)← R̃(∆i +1)

i−2 (z),
11: end for
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Complete regular flow EEA

For EEA(z2t ,Se(z), t) :

N∑
i=1

δi = wH (e)− 1.

⇒ N = 2t

δ is a counter for the number of
shifts to re-align the operands:
⇒ ∆i

Merge the loops L1 and L2 in a
common pattern.

1: δ ← −1.
2: for j = 1, . . . , 2t do
3: αj ← R̂j−1,2t , βj ← R̂j−2,2t .

4: tempR(z)← z
(
αj R̂j−2(z)− βj R̂j−1(z)

)
.

5: if αj = 0 (ie deg(R̂j−1) < deg(R̂j−2)) then
6: δ ← δ + 1.
7: else
8: δ ← δ − 1.
9: end if

10: if δ < 0 then
11: (R̂j (z), R̂j−1(z))← (R̂j−1(z), tempR)
12: δ ← 0.
13: else
14: (R̂j (z), R̂j−1(z))← (tempR , R̂j−2(z))
15: δ ← δ.
16: end if
17: end for

Lemma

R̂d (z) = zd−wH (e)+1RN (z) = µzd−wH (e)+1r(z)

Therefore, provided 0 is not an element of x, R̂d (z) allows to recover the error positions
without ambiguity. (EEA in Alternant decoder and EEA2 in Patterson decoder)
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Conclusion

In this paper

Extend the attacks of Strenzke
Propose a new EEA algorithm determining the error-locator polynomial
• Costs always 16t2 field multiplications on any input (for Alternant decoder)
• The test that depends on the secret data is followed by two balanced branches

Provide completeness proofs

Perspectives

Hardware secure implementation and tests,

other kinds of attacks (fault, memory, template...)
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Thank you for your attention!

13/04/2015 Toward Secure Implementation of McEliece Decryption 17 / 17


	McEliece Public-Key Encryption
	Decryption oracle timing attacks
	Extended euclidean Algorithm with constant flow

