gemalto”

security to be free

Toward Secure Implementation of McEliece
Decryption

Mariya Georgieva &
Frédéric de Portzamparc

Gemalto & LIP6 , 13/04/2015

MCELIECE PuBLIC-KEY ENCRYPTION

DECRYPTION ORACLE TIMING ATTACKS

EXTENDED EUCLIDEAN ALGORITHM WITH CONSTANT FLOW

anltox 13/04/2015 Toward Secure Implementation of McEliece Decryption

Code-based Cryptography

Introduced in 1978 by McEliece

Advantages

Very fast encryption and fast decryption, faster than RSA
No need for crypto coprocessors

Based on NP-hard problem (Syndrome Decoding Problem)
Post-quantum security

x oo X

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Code-based Cryptography

Introduced in 1978 by McEliece

Advantages

Very fast encryption and fast decryption, faster than RSA
No need for crypto coprocessors

Based on NP-hard problem (Syndrome Decoding Problem)
Post-quantum security

x oo X

Disadvantages
* Big public keys (=~ 100 Kbits)

Few side-channel analysis for secure implementation ...

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Code based Cryptography

Syndrome Decoding Problem

public key Gy €F& <"
plaintext meF& error ey ciphertext c€F]

(o I o |+ (mer)= (oo)

Find m, e knowing G, ¢: NP-complete for G4 random.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Code based Cryptography

Syndrome Decoding Problem

N kxn
public key Gy €Fq

plaintext m E]Fg error ecFg ciphertext c€Fg

(o | @ Jelms =(ea)

Find m, e knowing G, ¢: NP-complete for G4 random.

Definitions

x A support: X = (X, ..., Xn—1) € Iﬁ‘gm, with x; # x;

* A polynomial g(x) € Fgm[x] of degree t with g(x;) # 0.

x A Goppa code ¥(x, g) is described by the secret elements x and g(z)
x T; a t-decoder for 4(x, g), using the secret elements x and g(z)

* G a generator matrix of 4(x, g)

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

McEliece Public-Key Encryption

PARAMETERS : Field size g = 2
PUBLIC KEY : Gpx = SGP with

x Se]Fg”k)x("’k) random matrix
< P € Fg*" a random permutation matrix.

PRIVATE KEY : the t-decoder T; , S and P

Algorithm 1 McEliece Cryptosystem

ENCRYPT DECRYPT
1: Input m € F&. 1. Input ¢ € FY.
2: Generate random e € Fg with 2. Compute m = T;(cP—1)).
wy(e) = t. 3: If decoding succeeds,
3: Output ¢ = mGpy +e. S—'m, else output L.

output

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

The Decoder

The main steps are :

x Compute the polynomial syndrome S(z), a polynomial deduced from ¢,
but depending only on e.

x Use the Extended Euclidean Algorithm (EEA) to compute the error locator
polynomial o(z),

roots of o(z) are related to the support elements Xj in the error positions Jj.
x Find the roots of o(z). Here e € FJ, so e # 0 implies that g; = 1.

Alternant Decoder: generic for Alternant codes

EEA(2217 SAIt,e (2)7 t)

Alternant code

EEA(g(2), SGop,e(z)7 0) -

EEA(9(2), , [t/2])

with 7 = 1/ Sgpe(2)~" +1 mod g(2)

Patterson Decoder: specific for binary Goppa codes

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Extended Euclidean Algorithm

Algorithm 2 Extended Euclidean Algorithm (EEA)

Input: a(z), b(z),deg(a) > deg(b), din
Output: u(z), r(z) with b(z)u(z) = r(z) mod a(z) and deg(r) < dyn

1: r_1(2) < a(z),rn(z) < b(z),u_1(2) + 1,up(z) < O,
2. i+ 0

3: while deg(ri(z)) > dj, do

4 j+—i+1

5 G+ ric2(2)/ri-1(2)

6 1< ri-2(2) — qi(2)ri-1(2)

7 U ¢ Ui2(2) — qi(2)uj-1(2)

8: end while

9 N« i

0

: return up(2), rn(2)

The number of steps in the "while” depends on inputs a(z) and b(z).

Complexity is in O(deg(a)?) fields multiplications.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Motivation and attacks

Difficulties for a secure implementation

x The operation flow of the decryption is strongly influenced by the error vector
» No information is known about the error vector before determining oe

x The observed or manipulated device may leak information before any detection of
the attack

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Motivation and attacks

Difficulties for a secure implementation

x The operation flow of the decryption is strongly influenced by the error vector
» No information is known about the error vector before determining oe

x The observed or manipulated device may leak information before any detection of
the attack

Various attacks when using an unprotected decryption:

x on the messages (R. Avanzi et al., A. Shoufan et al.)
x on the secret key (F. Strenzke)

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Motivation and attacks

Difficulties for a secure implementation

x The operation flow of the decryption is strongly influenced by the error vector
» No information is known about the error vector before determining oe

x The observed or manipulated device may leak information before any detection of
the attack

Various attacks when using an unprotected decryption:

x on the messages (R. Avanzi et al., A. Shoufan et al.)
x on the secret key (F. Strenzke)

No satisfactory countermeasure.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Motivation and attacks

Difficulties for a secure implementation

x The operation flow of the decryption is strongly influenced by the error vector
» No information is known about the error vector before determining oe

x The observed or manipulated device may leak information before any detection of
the attack

Various attacks when using an unprotected decryption:

x on the messages (R. Avanzi et al., A. Shoufan et al.)
x on the secret key (F. Strenzke)

No satisfactory countermeasure.

x Shows the need for an efficient countermeasure.
x Proposes such countermeasure.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Decryption oracle timing attacks

. Request Time/ Power of
Cipher l:.:c:}lfgi T:r Decryption execution of Error Message
P of cipher® EEA

Pick the Request Time/ Power Error

errors with Decryption of execution of evaluation
low-weigh of cipher EEA polynomial

Algorithm 3 Framework for key-recovery attacks on a decryption device. (Strenzke)

INPUT: A decryption device D, public encryption key Gp,p.
OuTPUT: The secret support x.

1: Choose w well-chosen error weights

2: for (ij, ..., iw) subsetof {0,...,n— 1} do

3 Picke=(0,...,6;,...,8,,...,0) with wy(e) = w.

4: Request decryption D(e).

5: Perform timing or power consumption analysis of D(e).

6. If EEA is faster than average, deduce a polynomial condition on X, ..., X;,
7: end for

8: Solve the non-linear system of all the collected equations.

9: return Secret support X = (X, ..., Xp—1)-

X
mto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Secret decryption key recovery attacks

Lemma (Patterson decoder)

Let%(x,9(z)) be a binary Goppa code and Se(z) the pol. syndrome associated to an
error e with wy(e) < deg(g)/2 — 1. Write Se(z) = ﬁ:(? mod g(z). The number of

iterations of the while loop (EEA(g(z), Se(z),0), EEA(g(z), 7(2), [t/2])) = (N}, Nk).

N; < deg(we(2)) + wy(e) and Ny < deg(we(2))/2. (1)

X
mto 13/04/2015 Toward Secure Implementation of McEliece Decryption *

Secret decryption key recovery attacks

Lemma (Patterson decoder)

Let¥9(x,9(z)) be a binary Goppa code and Se(z) the pol. syndrome associated to an

error e with wy(e) < deg(g)/2 — 1. Write Se(z) = ﬁ:—g; mod g(z). The number of

iterations of the while loop (EEA(g(z), Se(z),0), EEA(g(z), 7(2), [t/2])) = (N}, Nk).
Ny < deg(we(2)) + wi(e) and Nk < deg(we(2))/2. O]

w

Strenzke’s attacks in brief

x 2010 : Observe Nk for error weights w = 4.

we(Z) = (Xj, + X, + X3 + Xi,) Z° + Xjy Xip Xig + Xiy Xi Xi, ~+ Xiy Xy Xj, + Xi Xj X -

wi(e) wg(e)

If Ny is smaller than average = x;, + x;, + Xiy + X, =0
No practical attack, countermeasure proposed.

x 2011 : Observe N, for w = 6 — practical attack. Countermeasure proposed.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Secret decryption key recovery attacks

Lemma (Patterson decoder)

Let¥9(x,9(z)) be a binary Goppa code and Se(z) the pol. syndrome associated to an

error e with wy(e) < deg(g)/2 — 1. Write Se(z) = ﬁ:—g; mod g(z). The number of

iterations of the while loop (EEA(g(z), Se(z),0), EEA(g(z), 7(2), [t/2])) = (N}, Nk).
Ny < deg(we(2)) + wi(e) and Nk < deg(we(2))/2. O]

w

Strenzke’s attacks in brief

x 2010 : Observe Nk for error weights w = 4.

we(Z) = (Xj, + X, + X3 + Xi,) Z° + Xjy Xip Xig + Xiy Xi Xi, ~+ Xiy Xy Xj, + Xi Xj X -

wi(e) wg(e)

If Ny is smaller than average = x;, + x;, + Xiy + X, =0
No practical attack, countermeasure proposed.

x 2011 : Observe N, for w = 6 — practical attack. Countermeasure proposed.

In this paper : Extended attack bypassing previous countermeasure

Combination of first and second EEA: observe couples (N,, Ni) for errors with w = 8

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption ﬂ

Extended Euclidean Algorithm

EEA with a flow of operations independent of the error vector

x Discards previous message-recovery attacks
x Discards previous key-recovery attacks

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Extended Euclidean Algorithm

EEA with a flow of operations independent of the error vector

x Discards previous message-recovery attacks
x Discards previous key-recovery attacks

Inspired by a work of Berlekamp (VLSI)

x No clear completeness proofs found in the literature
x Never proposed for McEliece
x Fully efficient only for the Alternant decoder

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Unrolling Euclidean division
Step 1: Decomposition of each euclidean division into a number of polynomial
subtractions depending only on §; = deg(q;(z)) = deg(ri_2) — deg(ri_1).

4 | allz2 +a7z +a11
a”(z“)—22(a”22+a7z+a”)
alZ3 +a1122
a11(a723+a1122)—a7Z(a1122+a7Z+a11)

1: while deg(ri(z)) > dy, do
2: i< i+1
3 g+ ri—2(2)/ri—1(2)

2 3
aZ +a°z
4 i rio(2) - qi(2)riq(z
5 entfl whi’Iez()= @@ a11(a22+a3z)—a(a11622+a7122+)
a’Z +o«o

z4 — (a4z2+z+a13)(a1122+a7z+a11)—i—(aaz—i-ag)

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption 2

Unrolling Euclidean division
Step 1: Decomposition of each euclidean division into a number of polynomial
subtractions depending only on §; = deg(q;(z)) = deg(ri_2) — deg(ri_1).

1: while deg(R;(z)) > dj, do
20 <€ i+1

1: while deg(ri(z)) > dj, do s RY(2) « Ri_a(2), Bi + LC(Ri_1(2))

2 41 4 Aj < deg(Rj_2) —deg(Ri_1)

s g« ri2(2)/ri-1(2) 5 forj=0,....Aido

4 i ria(2) = qi(2)i-1(2) 6 aij < Rig ,p

5. end while 7 Rf/fzﬂ(z) - B,-R/.({)Z(z) —a;;z% IR 4(2)
s: end for

o Ri(2) « R (2),
10: end while

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Unrolling Euclidean division
Step 1: Decomposition of each euclidean division into a number of polynomial
subtractions depending only on §; = deg(q;(z)) = deg(ri_2) — deg(ri_1).

1: while deg(R;(z)) > dj, do
20 i (E i+1

1: while deg(ri(z)) > dj, do s RY(2) « Ri_a(2), Bi + LC(Ri_1(2))

2 i+ 4 Aj < deg(Rj_2) —deg(Ri_1)

3 g« r-2(2)/1-1(2) 5. forj=0,...,A;do

41— n(2) = qi(2)nq(2) 6 i< FRig

5. end while 71 R[(Jj';)(z) - ,BIR,(J,)Z(Z) _ Oéi,jzA"_jRi71 (2)
s: end for

o R(2) « R (2),
10: end while

Foralli=—1,...,N, there exists \; € Fom such that: Ri(z) = \iri(2),
As a consequence, A; = deg(R;_»2) — deg(R;_1) = deg(ri_o) — deg(ri_1) = §;.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption 2

Unrolling Euclidean division
Step 1: Decomposition of each euclidean division into a number of polynomial
subtractions depending only on §; = deg(q;(z)) = deg(ri_2) — deg(ri_1).

1: while deg(R;(z)) > dj, do
2 <E i+1

1: while deg(ri(z)) > dj, do s RY(2) « Ri_a(2), Bi + LC(Ri_1(2))

2: i< i+1 4: AVR deg(H,_g) — deg(R,-_1)

3 Qi < ri-2(2)/ri-1(2) 5 fOI’j:O,...',A,- do

4 i ria(2) = qi(2)i-1(2) 6 Qi Rig '

5. end while 7. Rl(lj';)(z) P ,BIR,Q,)Z(Z) _ ai,jzAi_jRi—1 (Z)
8: end for

o R(2) « R (2),
10: end while

Foralli=—1,...,N, there exists \; € Fom such that: Ri(z) = \iri(2),
As a consequence, A; = deg(R;_»2) — deg(R;_1) = deg(ri_o) — deg(ri_1) = §;.

< Still a while loop.

x Polynomial shift changes.
v
W' Ky 13/04/2015 Toward Secure Implementation of McEliece Decryption ﬂ

Regular polynomial shift pattern

Step 2: multiply the operand by z at each for iteration ("re-aligning”).

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Regular polynomial shift pattern

Step 2: multiply the operand by z at each for iteration ("re-aligning”).

z4:(a422+z+a13)(a1122+a7z+a11)+(a3z+a9)

z a2 +a’z+
2(0 x (2*) =1 x (a2 +a’z + ')

z4 ‘ a2 4o’z 4t AP fa’ZZ+allzs
a''(z4) — 2#(a" 2 + o’z + o) 20 % (24) =1 x ("2 + 0722 + a'121))
o’ 4allz? A 1’81 a2
a”(o/za+a1122)—a7z(a1122+o¢7z+a”) Z(a11(24)—1 ><((:’1124_*_01723_'_111122))
az?2 4oz o’ 4 a8
a'(az? +a®z) —a(a" 22 + a7z + ™) z(a’(a"Z + o723 + aM'2%) — a'M(a72* +a'2?))
abz +al? azt + a2

z(a(a@"z* + o’ 28 + a1 2?) — o' (az* + a32%))

ab74 + al2z®

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption 3

Regular polynomial shift pattern
1: while deg(Fi (2)) > dj, do

2:

3:

8:
9:

i< i+1

RY,(2) « Ri—2(2),

Bi < LC(R;i_1(2))

A; < deg(Ri_2) — deg(R;_1)
forj=0,...,A;do

- j
@jj Ry

RY(2)

B8RV (2) - i jz2~IR;_4(2)
end for
Ri(2) « RS(2),

10: end while

1: fori=1,... Ndo
2 A9\2) « Ria(2),
3 forj=1,...,A;,—1do
4: Ri_1(2) «+ zRi_1(2) L4
5. end for
6. forj=0,...,A;do
7 5‘// ~ F",(jl)i, Bi < Ri—1,a-
8: RUD(2) «
(5,"‘?,@2(2) - O"ti,jr:fiq(z)) Lo
9: gnd for .
10: Ri(z) « RL(2),
11: end for

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Regular polynomial shift pattern

1: while deg(R;(2)) > dsi, do tfori=1,...,Ndo
2 i1 2 R%(2) « Ri_a(2),
s RO(2) « Ri_a(2), s forj=1,...,A;—1do
Bi + LC(Ri—1(2)) 4 Ri—1(2) + zR;—1(2) ¢ L
: Aj <+ deg(Ri_2) —deg(Ri_1) 5: end for
5. forj=0,...,A;do 6. forj=0,...,A;do
7

6: Qjj < Ri,ld,',z—j’ &l/ — 'rq,(j()]s EI <~ ﬁi717d_
7 RUD(2) & RIY(2)
,BiR,gQZ(Z) - Oz,‘,/‘ZA"_jR,‘,1 (Z) (,BIRO)g(Z) — &]RI 1(2)) Lo
8: end for (A1) 9: end for
o Ri(z) < RS (2), 10: Ri(2) + Rfff‘)(z),
10: end while 11: end for

Foralli=1,...,N, (Ri_1(2), Ri(2)) = (z9-%-1R;_1(2), 29~ %111 R;(2)).

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Regular polynomial shift pattern

1: while deg(R;(2)) > dsi, do tfori=1,...,Ndo
2 i1 2 R%(2) « Ri_a(2),
s RO(2) « Ri_a(2), s forj=1,...,A;—1do
Bi + LC(Ri—1(2)) 4 Ri—1(2) + zR;—1(2) ¢ L
: Aj <+ deg(Ri_2) —deg(Ri_1) 5: end for
5. forj=0,...,A;do 6. forj=0,...,A;do
7

6 Qjj <= Ri{¢72—j’ 56// — 'Ei’,(j(),, Bi < Ri_1.9.
7 RUD(2) & RIY(2)
,BIR,gQZ(Z) - Oz,‘,/'ZA"_/R,‘,1 (Z) (B,RU)Z(Z) — &]RI 1(2)) Lo
8: end for (A1) 9: end for
o Ri(z) < RS (2), 10: Ri(2) + Rfff‘)(z),
10: end while 11: end for

Foralli=1,...,N, (Ri_1(2), Ri(2)) = (z9-%-1R;_1(2), 29~ %111 R;(2)).

Problems (pedagogical algorithm):

* Find N
x Find the A; during the execution

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption ﬂ

Complete regular flow EEA

x For EEA(Z%!, Se(2),1) :

N

Z(;,' = w,.,(e) —-1.
i=1

= N=2t

x ¢ is a counter for the number of
shifts to re-align the operands:
= A,‘

x Merge the loops Ly and Ly ina
common pattern.

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Complete regular flow EEA
1: 0+ —1.
2 forj=1,...,2tdo
3 aj ’%71,2175/' — ’:_1'/72,2t-

< For EEA(Z%, Se(2), 1) : 4 tempr(z) + z (a].qu 2(2) - BB 1(2))

5. ifa; =0 (ie deg(Fn’, 1) < deg(Ff/ 2)) then
> 6 =wy(e) - 1. 6: 5541
=1 7. else
8: d+o0—1.
= N=21 o endif
x § is a counter for the number of 10 ifo <0 then
shifts to re-align the operands: 11 (R (2, B_1(2)) « (Aj_1(z), tempg)
= A 12: 6+ 0.
< Merge the loops Ly and Ly in a 13. else R R
common pattern. 14; (Ri(2), Ri—1(2)) + (tempg, Rji_2(2))
15: R
16: end if
17: end for

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Complete regular flow EEA

x For EEA(Z%!, Se(2),1) :

N

1: 0+ —1.
2 forj=1,...,2tdo
3 aj+ Ri121,8 < Rji_22t

4 tempp(z) + z (ajﬁi’j 2(2) - BR_ 1(2))

5. ifa; =0 (ie deg(Fn’, 1) < deg(Ff, 2)) then
> 6= wy(e) - 6: 5841
i=1 7. else
8: d+o0—1.
= N=21 o endif
x ¢ is a counter for the number of 10: if 8§ < 0then
shifts to re-align the operands: 11 (,qu(z), ,qu_1 (2)) « (,Efj_1 (2), tempg)
= A 12: 5§+ 0.
x Merge the loops Ly and Ly in a 13. else R .
common pattern. 14; (Rj(2), Rji—1(2)) « (tempg, Rj_2(2))
15: § 6.
16: end if
17: end for

Ry(z) = 29~ "H@+1Ry(2) =

Mzd—WH(e)‘*" r(z)

gemalto”

13/04/2015

Toward Secure Implementation of McEliece Decryption

Complete regular flow EEA
1: 5+ —1.
2 forj=1,...,2tdo
o _ 8 o5« R_i2.8 < Ri2pt
x For EEA(z?!, Se(2),t) : & tompp(z) — z(ajﬁt’,- »(2) _ﬁjA/‘ 1(2))

N

5. ifa; =0 (ie deg(Fn’, 1) < deg(Ff, 2)) then
> 6= wy(e) 1. 6: 5541
i 7. else
8: d+d6—1.
= N=2t o endif
x§ is a counter for the number of 10: if § < 0 then
shifts to re-align the operands: 11: (,qu(z), ,qu_1 (2)) « (,Efj_1 (2), tempg)
= A 12: 5« 0.
x Merge the loops Ly and Ly in a 13. else R .
common pattern. 14: (R(2), Ri—1(2)) « (tempg, Rj_2(2))
15: 6+ 9.
16: end if
17: end for

Ry(2) = 20~ "M+ Ry(2) = pzd =@+ 11(2)

Therefore, provided 0 is not an element of x, Ry(z) allows to recover the error positio
without ambiguity. (EEA in Alternant decoder and EEA2 in Patterson decoder)

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Conclusion

In this paper

x Extend the attacks of Strenzke
x Propose a new EEA algorithm determining the error-locator polynomial

» Costs always 1612 field multiplications on any input (for Alternant decoder)
» The test that depends on the secret data is followed by two balanced branches

x Provide completeness proofs

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Conclusion

In this paper
x Extend the attacks of Strenzke

x Propose a new EEA algorithm determining the error-locator polynomial

» Costs always 1612 field multiplications on any input (for Alternant decoder)
» The test that depends on the secret data is followed by two balanced branches

x Provide completeness proofs

Perspectives

x Hardware secure implementation and tests,
xother kinds of attacks (fault, memory, template...)

X
mlto 13/04/2015 Toward Secure Implementation of McEliece Decryption

Thank you for your attention!

N\
mw 13/04/2015 Toward Secure Implementation of McEliece Decryption *

	McEliece Public-Key Encryption
	Decryption oracle timing attacks
	Extended euclidean Algorithm with constant flow

