Support Vector Machines for Improved IP Detection with Soft Physical Hash Functions.

Ludovic-Henri Gustin, François Durvaux, Stéphanie Kerckhof, François-Xavier Standaert, Michel Verleysen

UNIVERSITE CATHOLIQUE DE LOUVAIN

COSADE - April 2014

Context

Integrated circuit design and fabrication:

- More and more complex hardware designs
- Designs sold as Intellectual Property (IP)
- IP market growing

Problem

• Counterfeiting

Permission-based protections (e.g. security chip, PUFs):

- ${\ensuremath{\, \bullet }}$ Key needed to use the IP
- A priori solution

Permission-based protections (e.g. security chip, PUFs):

- Key needed to use the IP
- A priori solution
- Limitation:
 - Difficulty to integrate in customers' products

Watermarking (e.g. temperature, power consumption):

- Specific piece of information inserted
- A posteriori solution

Watermarking (e.g. temperature, power consumption):

- Specific piece of information inserted
- A posteriori solution

Limitations of both solutions :

- Early integration in design process
- May be removed

Use of side-channel leakage as an IP signature

- A *posteriori* solution
- Hash (IP "signature") extracted from power traces
- Cannot be removed since intrinsic to the IP execution
- No chip modification required

Use of side-channel leakage as an IP signature

- A *posteriori* solution
- Hash (IP "signature") extracted from power traces
- Cannot be removed since intrinsic to the IP execution
- No chip modification required

This work :

- Soft Physical Hash (SPH) based framework
- Support Vector Machines (SVM) detection tool

Outline

Background

- Generic detection framework SPH
- Binary SVM
- One-class SVM (OSVM)

2 Specification of the detection framework

3 Case studies

Perceptual robustness

- Same IPs \Rightarrow high similarity scores
- Linked to the non-detection error probability

Content sensitivity

- Different IPs \Rightarrow low similarity scores
- Linked to false-alarm error probability

Previous experiment :

- FPGA Designs : Xilinx Virtex-II Pro FPGA, 6 block ciphers
- Promising experimental results
- Essentially, correlation-based statistics (Pearson's correlation coefficient)

Previous experiment :

- FPGA Designs : Xilinx Virtex-II Pro FPGA, 6 block ciphers
- Promising experimental results
- Essentially, correlation-based statistics (Pearson's correlation coefficient)

This study : Usage of machine learning's **Support Vector Machines (SVM)** to extract information from power traces (FGPA's block ciphers studied in [2])

- Proven to effectively solves detection/classification tasks in various areas of application
- Learn automatically arbitrary complex functions
- Handle large dimensionality

Estimation of classification fonction(s) of hash vectors $\hat{f}_c : \mathbf{x} \to \{-1, +1\}$:

Estimation of classification fonction(s) of hash vectors $\hat{f}_c: {\bf x} \to \{-1,+1\}$:

• *m* training vectors $\mathbf{x}_i \in \mathbb{R}^n$ and class $y_i \in \{-1, +1\}$ (i = 1..m)

Estimation of classification fonction(s) of hash vectors $\hat{f}_c : \mathbf{x} \to \{-1, +1\}$:

- *m* training vectors $\mathbf{x}_i \in \mathbb{R}^n$ and class $y_i \in \{-1, +1\}$ (i = 1..m)
- Predict y_i for unseen observation, with separating hyperplane

Estimation of classification fonction(s) of hash vectors $\hat{f}_c : \mathbf{x} \to \{-1, +1\}$:

- *m* training vectors $\mathbf{x}_i \in \mathbb{R}^n$ and class $y_i \in \{-1, +1\}$ (i = 1..m)
- Predict y_i for unseen observation, with separating hyperplane
- Non-linear frontiers are possible

One-class SVM (OSVM)

Natural extension of the binary case

• No assumption on the negative population : hyperplane *H* separates most of the data from the origin

One-class SVM (OSVM)

Natural extension of the binary case

- No assumption on the negative population : hyperplane *H* separates most of the data from the origin
- Penalty cost for outliers (Adjustable trade-off)

One-class SVM (OSVM)

Natural extension of the binary case

- No assumption on the negative population : hyperplane *H* separates most of the data from the origin
- Penalty cost for outliers (Adjustable trade-off)

Similarity score \sim *distance* of a classified vector to the hyperplane

Outline

1 Background

2 Specification of the detection framework

3 Case studies

4 Conclusion

5 lightweight block ciphers : HIGHT, ICEBERG, KATAN, NOEKEON, PRESENT running on a Xilinx Virtex-II Pro FPGA .

5 lightweight block ciphers : HIGHT, ICEBERG, KATAN, NOEKEON, PRESENT running on a Xilinx Virtex-II Pro FPGA .

Evaluation

Feature vectors : voltage variation measured around a shunt resistor on the Sasebo-G board.

5 lightweight block ciphers : HIGHT, ICEBERG, KATAN, NOEKEON, PRESENT running on a Xilinx Virtex-II Pro FPGA .

Evaluation

Feature vectors : voltage variation measured around a shunt resistor on the Sasebo-G board.

Extraction

Reference : construction of an OSVM model based on about 1300 traces (parameters output).

Hypothese of work : Construction of models based solely on one measurement context.

Suspicious : no particular processing.

5 lightweight block ciphers : HIGHT, ICEBERG, KATAN, NOEKEON, PRESENT running on a Xilinx Virtex-II Pro FPGA .

Evaluation

Feature vectors : voltage variation measured around a shunt resistor on the Sasebo-G board.

Extraction

Reference : construction of an OSVM model based on about 1300 traces (parameters output).

Hypothese of work : Construction of models based solely on one measurement context.

Suspicious : no particular processing.

Detection

Distance metrics to the hyperplane.

Outline

Background

2 Specification of the detection framework

3 Case studies

- Standalone FPGA designs
- Re-synthesized standalone FPGA designs
- Parasitic IP running in parallel
- Advanced detection scenario

4) Conclusion

(1) Ref. PRESENT - Susp. standalone

- Classification outcome (binary output) vs distance metrics
- Green threshold : min score for PRESENT traces (protected IP).
- Red threshold : max score for traces from other IPs.

Resynthesized : New placement and routing, under area optimisation constraints.

Resynthesized : New placement and routing, under area optimisation constraints.

Parasitic IP : Linear feedback shift register (LFSR) of 2048 bits. **Below the 0 threshold :** Failure of the classifier, but still a detection area.

Identified problem

We can't find a correct decision threshold when combining cases :

- lowest PRESENT (parasited) < highest KATAN (re-synthetized)
 - \Rightarrow no detection gap
 - misclassification(s) can occur
- Two tweaks are needed to enhance detection : exploiting data dependencies and noise reduction

(4) Ref. PRESENT - Susp. all combined, 5x avg. traces & known inputs

Known inputs : Takes advantage of data dependencies Averaging : Reduce algorithmic noise

Outline

Background

2 Specification of the detection framework

3 Case studies

On using OSVM combined with the SPH framework ...

OSVM

Pros

- Can handle large dimensionality
- Realistic model : no assumption made on negative examples
- Better results than previously reached :
 - Only the more complex case required to exploit data dependencies and noise reduction
 - But more measurement traces needed (1300)

Cons

- Unsupervised : difficulty to build good heuristics to select model's parameters
- Failure of the classifier on datasets with parasitic algorithm noise.

new threshold choice

• Necessary rejection of outliers (intrinsic bias).

new threshold choice

More complex and richer set of IPs and transformations of IPs.

Improving detection quality :

• *Evaluation*, other feature vectors potentially interesting

Thank you for your attention !