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Context

Integrated circuit design and fabrication:
@ More and more complex hardware designs
@ Designs sold as Intellectual Property (IP)

o IP market growing

Problem

o Counterfeiting




Existing Solutions

Permission-based protections (e.g. security chip, PUFs):

o Key needed to use the IP

@ A priori solution
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Existing Solutions

Permission-based protections (e.g. security chip, PUFs):

o Key needed to use the IP

@ A priori solution

Limitation:

o Difficulty to integrate in customers’ products

2

Answer @

Security chip

Request

1

Protected IP

3




Existing Solutions

Watermarking (e.g. temperature, power consumption):
@ Specific piece of information inserted

@ A posteriori solution

Watermarking AES ~2.5 rounds
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Existing Solutions

Watermarking (e.g. temperature, power consumption):
@ Specific piece of information inserted

@ A posteriori solution

Watermarking AES ~2.5 rounds
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Limitations of both solutions :
@ Early integration in design process

@ May be removed



Use of side-channel leakage as an IP signature

A posteriori solution
Hash (IP "signature”) extracted from power traces

Cannot be removed since intrinsic to the IP execution

No chip modification required
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A posteriori solution
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This work :
@ Soft Physical Hash (SPH) based framework
@ Support Vector Machines (SVM) detection tool



Outline

© Background
@ Generic detection framework - SPH
@ Binary SVM
@ One-class SVM (OSVM)

© Specification of the detection framework
© Case studies

© Conclusion
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Generic detection framework - Soft Physical Hash Function (SPH)
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Soft Physical Hash Function (SPH) properties

Perceptual robustness
@ Same IPs = high similarity scores

@ Linked to the non-detection error probability

Content sensitivity
o Different IPs = low similarity scores

@ Linked to false-alarm error probability




Soft Physical Hash Functions (SPH)

Previous experiment :
o FPGA Designs : Xilinx Virtex-II Pro FPGA, 6 block ciphers
@ Promising experimental results

o Essentially, correlation-based statistics (Pearson’s correlation coefficient)



Soft Physical Hash Functions (SPH)

Previous experiment :
o FPGA Designs : Xilinx Virtex-II Pro FPGA, 6 block ciphers
@ Promising experimental results

o Essentially, correlation-based statistics (Pearson’s correlation coefficient)

This study : Usage of machine learning’s Support Vector Machines (SVM) to extract
information from power traces (FGPA's block ciphers studied in [2])

@ Proven to effectively solves detection/classification tasks in various areas of
application

o Learn automatically arbitrary complex functions

@ Handle large dimensionality



Support Vector Machines - Binary classification

Estimation of classification fonction(s) of hash vectors f. : x — {—1,+1} :
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Support Vector Machines - Binary classification

Estimation of classification fonction(s) of hash vectors f. : x — {—1,+1} :

@ m training vectors x; € R" and class y; € {—1,+1} (i = 1..m)
@ Predict y; for unseen observation, with separating hyperplane
@ Non-linear frontiers are possible



One-class SVM (OSVM)

Natural extension of the binary case

@ No assumption on the negative
population : hyperplane H separates
most of the data from the origin
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One-class SVM (OSVM)

Natural extension of the binary case

@ @ No assumption on the negative
population : hyperplane H separates
most of the data from the origin

o ° Penalty cost for outliers (Adjustable
@ trade-off)
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© Conclusion
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Specification of the detection framework

Object to protect

5 lightweight block ciphers : HIGHT, ICEBERG, KATAN, NOEKEON, PRESENT running on a
Xilinx Virtex-II Pro FPGA .
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Specification of the detection framework

Object to protect

5 lightweight block ciphers : HIGHT, ICEBERG, KATAN, NOEKEON, PRESENT running on a
Xilinx Virtex-II Pro FPGA .

Evaluation

Feature vectors : voltage variation measured around a shunt resistor on the Sasebo-G
board.

Extraction

Reference : construction of an OSVM model based on about 1300 traces (parameters
output).
Hypothese of work : Construction of models based solely on one measurement context.

Suspicious : no particular processing.

Detection

Distance metrics to the hyperplane.




Outline

© Case studies
@ Standalone FPGA designs
@ Re-synthesized standalone FPGA designs
@ Parasitic IP running in parallel
@ Advanced detection scenario



(1) Ref. PRESENT - Susp. standalone
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o Classification outcome (binary output) vs distance metrics
@ Green threshold : min score for PRESENT traces (protected IP).
@ Red threshold : max score for traces from other IPs.
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(2) Ref. PRESENT - Susp. resynthesized

Resynthesized : New placement and routing, under area optimisation constraints.
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(2) Ref

distance to hyperplane

. PRESENT - Susp. resynthesized
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Resynthesized : New placement and routing, under area optimisation constraints.



(3) Ref. PRESENT - Susp. with parasitic IP
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Parasitic IP : Linear feedback shift register (LFSR) of 2048 bits.
Below the 0 threshold : Failure of the classifier, but still a detection area.
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Identified problem

We can't find a correct decision threshold when combining cases :

o lowest PRESENT (parasited) < highest KATAN (re-synthetized)
» = no detection gap
> misclassification(s) can occur
@ Two tweaks are needed to enhance detection : exploiting data dependencies and
noise reduction



(4) Ref. PRESENT - Susp. all combined, 5x avg. traces & known inputs
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Known inputs : Takes advantage of data dependencies
Averaging : Reduce algorithmic noise
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On using OSVM combined with the SPH framework ...

0SVM

Pros Cons

OB IS Cl BT el o Unsupervised : difficulty to build good

@ Realistic model : no assumption made heuristics to select model's parameters

on negative examples o Failure of the classifier on datasets with

@ Better results than previously reached : parasitic algorithm noise.
Only the more complex case required new threshold choice
to exploit data dependencies and
noise reduction

But more measurement traces needed .
(1300) new threshold choice

@ Necessary rejection of outliers (intrinsic
bias).




Going further

More complex and richer set of IPs and
transformations of IPs.

Improving detection quality :
o Evaluation, other feature vectors
potentially interesting
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SVM for Improved IP Detection with Soft Physical Hash Functions

Thank you for your attention !
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