
Addition with Blinded Operands

Mohamed Karroumi? � Benjamin Richard � Marc Joye

Addition with Blinded Operands

Mohamed Karroumi? � Benjamin Richard � Marc Joye

Outline

1 Preliminary Background
DPA attacks and countermeasures
Masking and switching method

2 A new DPA resistant addition algorithm
Basic algorithm
DPA resistant addition algorithm

3 Application to XTEA
XTEA overview
Preventing first-order DPA
Performance analysis

4 Conclusion

2 / 16 COSADE 2014 − Paris, April 14–15, 2014

Outline

1 Preliminary Background
DPA attacks and countermeasures
Masking and switching method

2 A new DPA resistant addition algorithm
Basic algorithm
DPA resistant addition algorithm

3 Application to XTEA
XTEA overview
Preventing first-order DPA
Performance analysis

4 Conclusion

Differential Power Analysis

Side channel attack
DPA introduced by Paul Kocher et al. 1998
Recovers secret keys used for en/decryption

Some a priori knowledge of the algorithm is required

Power consumption depends on data being processed
Power measurements give hints about processed internal data

When key cannot be found directly in a single power trace
Gather many power consumption curves
Assume a part of the key value, divide data into two groups(0 and
1 for chosen bit), calculate mean value curve of each group
Correlation between predicted power consumption and actual
power consumption
If the subkey guess is correct, then the prediction (likely) matches
the physical measurement

3 / 16 COSADE 2014 − Paris, April 14–15, 2014

Differential Power Analysis

Side channel attack
DPA introduced by Paul Kocher et al. 1998
Recovers secret keys used for en/decryption

Some a priori knowledge of the algorithm is required

Power consumption depends on data being processed
Power measurements give hints about processed internal data

When key cannot be found directly in a single power trace
Gather many power consumption curves
Assume a part of the key value, divide data into two groups(0 and
1 for chosen bit), calculate mean value curve of each group
Correlation between predicted power consumption and actual
power consumption
If the subkey guess is correct, then the prediction (likely) matches
the physical measurement

3 / 16 COSADE 2014 − Paris, April 14–15, 2014

Differential Power Analysis

Side channel attack
DPA introduced by Paul Kocher et al. 1998
Recovers secret keys used for en/decryption

Some a priori knowledge of the algorithm is required

Power consumption depends on data being processed
Power measurements give hints about processed internal data

When key cannot be found directly in a single power trace
Gather many power consumption curves
Assume a part of the key value, divide data into two groups(0 and
1 for chosen bit), calculate mean value curve of each group
Correlation between predicted power consumption and actual
power consumption
If the subkey guess is correct, then the prediction (likely) matches
the physical measurement

3 / 16 COSADE 2014 − Paris, April 14–15, 2014

DPA results example

DPA and power curves superposition
Correct subkey predicted⇒ spikes in the differential curves
Repeat the process for other parts of the key
Exhaustive search for remaining bits of the key

Time (μs)

Current (μA)

Wrong Key Guess

Correct Key Guess

4 / 16 COSADE 2014 − Paris, April 14–15, 2014

DPA results example

DPA and power curves superposition
Correct subkey predicted⇒ spikes in the differential curves
Repeat the process for other parts of the key
Exhaustive search for remaining bits of the key

Time (μs)

Current (μA)

Wrong Key Guess

Correct Key Guess

4 / 16 COSADE 2014 − Paris, April 14–15, 2014

A DPA countermeasure

An approach is to randomize the intermediate results
the power consumption of the device processing randomized data
is not correlated to the intermediate results

Masking: can be applied in software or hardware
Split intermediate variables into at least two shares during
execution (Chari et al. 1999)
Power leakage of one share does not leak sensitive information
Two shares (a random mask and masked variable) are sufficient
to protect against first-order DPA

Two common masking techniques
Boolean masking: x → (X = x ⊕ rx , rx)
Arithmetic masking: x → (X = x − rx , rx)

⇒ For algorithms that combine both types of operations, a secure
conversion from one masking to another must be used
(Messerges 2000)

5 / 16 COSADE 2014 − Paris, April 14–15, 2014

A DPA countermeasure

An approach is to randomize the intermediate results
the power consumption of the device processing randomized data
is not correlated to the intermediate results

Masking: can be applied in software or hardware
Split intermediate variables into at least two shares during
execution (Chari et al. 1999)
Power leakage of one share does not leak sensitive information
Two shares (a random mask and masked variable) are sufficient
to protect against first-order DPA

Two common masking techniques
Boolean masking: x → (X = x ⊕ rx , rx)
Arithmetic masking: x → (X = x − rx , rx)

⇒ For algorithms that combine both types of operations, a secure
conversion from one masking to another must be used
(Messerges 2000)

5 / 16 COSADE 2014 − Paris, April 14–15, 2014

A DPA countermeasure

An approach is to randomize the intermediate results
the power consumption of the device processing randomized data
is not correlated to the intermediate results

Masking: can be applied in software or hardware
Split intermediate variables into at least two shares during
execution (Chari et al. 1999)
Power leakage of one share does not leak sensitive information
Two shares (a random mask and masked variable) are sufficient
to protect against first-order DPA

Two common masking techniques
Boolean masking: x → (X = x ⊕ rx , rx)
Arithmetic masking: x → (X = x − rx , rx)

⇒ For algorithms that combine both types of operations, a secure
conversion from one masking to another must be used
(Messerges 2000)

5 / 16 COSADE 2014 − Paris, April 14–15, 2014

A DPA countermeasure

An approach is to randomize the intermediate results
the power consumption of the device processing randomized data
is not correlated to the intermediate results

Masking: can be applied in software or hardware
Split intermediate variables into at least two shares during
execution (Chari et al. 1999)
Power leakage of one share does not leak sensitive information
Two shares (a random mask and masked variable) are sufficient
to protect against first-order DPA

Two common masking techniques
Boolean masking: x → (X = x ⊕ rx , rx)
Arithmetic masking: x → (X = x − rx , rx)

⇒ For algorithms that combine both types of operations, a secure
conversion from one masking to another must be used
(Messerges 2000)

5 / 16 COSADE 2014 − Paris, April 14–15, 2014

Mask-switching methods

Example
I Securely compute (A + B)⊕ C with boolean masked variables

I 2 B-to-A and 1 A-to-B
conversions needed

I B-to-A is efficient and
costs 7 ops (Goubin
2001)

I A-to-B is less efficient
and costs 5k + 5 ops
(Goubin)

A⊕ rA B ⊕ rB

A− rA B − rB

A+B − (rA + rB)

rA rB

rA + rB

Conv + → ⊕

A+B ⊕ (rA + rB) C ⊕ rC

(A+ B)⊕ C ⊕ [(rA + rB)⊕ rC]

(rA + rB)⊕ rC

rC

Conv ⊕ → +Conv ⊕ → +

6 / 16 COSADE 2014 − Paris, April 14–15, 2014

Mask-switching methods

Example
I Securely compute (A + B)⊕ C with boolean masked variables

I 2 B-to-A and 1 A-to-B
conversions needed

I B-to-A is efficient and
costs 7 ops (Goubin
2001)

I A-to-B is less efficient
and costs 5k + 5 ops
(Goubin)

A⊕ rA B ⊕ rB

A− rA B − rB

A+B − (rA + rB)

rA rB

rA + rB

Conv + → ⊕

A+B ⊕ (rA + rB) C ⊕ rC

(A+ B)⊕ C ⊕ [(rA + rB)⊕ rC]

(rA + rB)⊕ rC

rC

Conv ⊕ → +Conv ⊕ → +

6 / 16 COSADE 2014 − Paris, April 14–15, 2014

Mask-switching with LUTs

In 2003, Coron and Tchulkine propose to use pre-computed
tables to perform A-to-B conversion

A table G is used to convert nibbles (i.e. 4 or 8-bit part of the
variables) from arithmetic to Boolean masking
The input of the table G is masked (additively) and viewed during
conversion step as a memory offset information
The table offset contains the corresponding (Boolean) masked
variable

The method was later improved by Neiβe and Pulkus in 2004
Reduces the RAM consumption

An extension to the above techniques was more recently
proposed by Debraize in 2012

Offers better security
Interesting for 8-bit CPUs

7 / 16 COSADE 2014 − Paris, April 14–15, 2014

Mask-switching with LUTs

In 2003, Coron and Tchulkine propose to use pre-computed
tables to perform A-to-B conversion

A table G is used to convert nibbles (i.e. 4 or 8-bit part of the
variables) from arithmetic to Boolean masking
The input of the table G is masked (additively) and viewed during
conversion step as a memory offset information
The table offset contains the corresponding (Boolean) masked
variable

The method was later improved by Neiβe and Pulkus in 2004
Reduces the RAM consumption

An extension to the above techniques was more recently
proposed by Debraize in 2012

Offers better security
Interesting for 8-bit CPUs

7 / 16 COSADE 2014 − Paris, April 14–15, 2014

Mask-switching with LUTs

In 2003, Coron and Tchulkine propose to use pre-computed
tables to perform A-to-B conversion

A table G is used to convert nibbles (i.e. 4 or 8-bit part of the
variables) from arithmetic to Boolean masking
The input of the table G is masked (additively) and viewed during
conversion step as a memory offset information
The table offset contains the corresponding (Boolean) masked
variable

The method was later improved by Neiβe and Pulkus in 2004
Reduces the RAM consumption

An extension to the above techniques was more recently
proposed by Debraize in 2012

Offers better security
Interesting for 8-bit CPUs

7 / 16 COSADE 2014 − Paris, April 14–15, 2014

This Talk

Mask-switching method

x ⊕ rx

Secure B-to-A

��

y ⊕ ry

��

s = (x + y)⊕ (rx + ry)

x − rx y − ry
+

(classical)
// (x + y)− (rx + ry)

Secure A-to-B (with LUTs)

KS

If we have only one addition (followed by boolean operations)
can we avoid mask-switching ?

New method
The new proposed algorithm is based on a more direct
approacxh

x ⊕ rx y ⊕ ry
Secure adder+3 s = (x + y)⊕ (rx ⊕ ry)

8 / 16 COSADE 2014 − Paris, April 14–15, 2014

This Talk

Mask-switching method

x ⊕ rx

Secure B-to-A

��

y ⊕ ry

��

s = (x + y)⊕ (rx + ry)

x − rx y − ry
+

(classical)
// (x + y)− (rx + ry)

Secure A-to-B (with LUTs)

KS

If we have only one addition (followed by boolean operations)
can we avoid mask-switching ?

New method
The new proposed algorithm is based on a more direct
approacxh

x ⊕ rx y ⊕ ry
Secure adder+3 s = (x + y)⊕ (rx ⊕ ry)

8 / 16 COSADE 2014 − Paris, April 14–15, 2014

Outline

1 Preliminary Background
DPA attacks and countermeasures
Masking and switching method

2 A new DPA resistant addition algorithm
Basic algorithm
DPA resistant addition algorithm

3 Application to XTEA
XTEA overview
Preventing first-order DPA
Performance analysis

4 Conclusion

Our construction

The goal is to securely compute S = (x + y)⊕ rs from (X, rx) and
(Y, ry) and without compromising the x or y through DPA

Idea: x + y = x ⊕ y ⊕ carry(x , y)

Construct an addition algorithm that takes blinded operands as
input

S = (x + y)⊕ rs = (x ⊕ y ⊕ c)⊕ rs

= (X⊕ rx)⊕ (Y⊕ ry)⊕ c ⊕ rs

= X⊕ Y⊕ c by setting rs = rx ⊕ ry

Find an algorithm that computes the carry of two variables
Ensure that all intermediate variables do not leak information

9 / 16 COSADE 2014 − Paris, April 14–15, 2014

Our construction

The goal is to securely compute S = (x + y)⊕ rs from (X, rx) and
(Y, ry) and without compromising the x or y through DPA

Idea: x + y = x ⊕ y ⊕ carry(x , y)

Construct an addition algorithm that takes blinded operands as
input

S = (x + y)⊕ rs = (x ⊕ y ⊕ c)⊕ rs

= (X⊕ rx)⊕ (Y⊕ ry)⊕ c ⊕ rs

= X⊕ Y⊕ c by setting rs = rx ⊕ ry

Find an algorithm that computes the carry of two variables
Ensure that all intermediate variables do not leak information

9 / 16 COSADE 2014 − Paris, April 14–15, 2014

Our construction

The goal is to securely compute S = (x + y)⊕ rs from (X, rx) and
(Y, ry) and without compromising the x or y through DPA

Idea: x + y = x ⊕ y ⊕ carry(x , y)

Construct an addition algorithm that takes blinded operands as
input

S = (x + y)⊕ rs = (x ⊕ y ⊕ c)⊕ rs

= (X⊕ rx)⊕ (Y⊕ ry)⊕ c ⊕ rs

= X⊕ Y⊕ c by setting rs = rx ⊕ ry

Find an algorithm that computes the carry of two variables
Ensure that all intermediate variables do not leak information

9 / 16 COSADE 2014 − Paris, April 14–15, 2014

Addition algorithm

AND-XOR-and-double method

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k)

1 A← x ⊕ y ; B← x & y ; C← 0
2 For i = 1 to k − 1 do

C← C & A
C← C⊕ B
C← 2·C

3 A← A⊕ C
4 Return A

Right-to-left carry evaluation
The carry is iteratively computed using A, B
Basis of our construction

10 / 16 COSADE 2014 − Paris, April 14–15, 2014

Addition algorithm

AND-XOR-and-double method

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k)

1 A← x ⊕ y ; B← x & y ; C← 0
2 For i = 1 to k − 1 do

C← C & A
C← C⊕ B
C← 2·C

3 A← A⊕ C
4 Return A

Right-to-left carry evaluation
The carry is iteratively computed using A, B
Basis of our construction

10 / 16 COSADE 2014 − Paris, April 14–15, 2014

Addition algorithm

AND-XOR-and-double method

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k)

1 A← x ⊕ y ; B← x & y ; C← 0
2 For i = 1 to k − 1 do

C← C & A
C← C⊕ B
C← 2·C

3 A← A⊕ C
4 Return A

Right-to-left carry evaluation
The carry is iteratively computed using A, B
Basis of our construction

10 / 16 COSADE 2014 − Paris, April 14–15, 2014

Addition algorithm

AND-XOR-and-double method

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k)

1 A← x ⊕ y ; B← x & y ; C← 0
2 For i = 1 to k − 1 do

C← C & A
C← C⊕ B
C← 2·C

3 A← A⊕ C
4 Return A

Right-to-left carry evaluation
The carry is iteratively computed using A, B
Basis of our construction

10 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for to k − 1 do
C0 ← C0 ⊕ Ω;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A

11 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for to k − 1 do
C0 ← C0 ⊕ Ω;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;

Trichina trick for secure AND

I Series of 4 AND and 4 XOR

b

γ x y x ry rx y rx ry

B0
γ

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for to k − 1 do
C0 ← C0 ⊕ Ω;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 1 to k − 1 do
C0 ← C0 & A;
C0 ← C0 ⊕ Ω;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

Goubin’s trick for carry masking

I Mask the carry C with 2γ

I Pre-compute the loop
transformed mask Ω

Ω = 2γ & A⊕ B⊕ γ
= 2γ & A0 ⊕ B0 ⊕ 2γ & A1

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 1 to k − 1 do
C0 ← C0 & A;
C0 ← C0 ⊕ Ω;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 1 to k − 1 do
T← C0 & A0;
C0 ← C0 & A1;
C0 ← C0 ⊕ Ω;
C0 ← C0 ⊕ T;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 2 to k − 1 do
T← C0 & A0;
C0 ← C0 & A1;
C0 ← C0 ⊕ Ω;
C0 ← C0 ⊕ T;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;

A new trick
I We noted that the carry after

round 1
C = 2 · (x & y ⊕ γ) = 2 · B0

I We saved operations of round 1

I The trick applies also to Goubin
A-to-B conversion (cost is
reduced from 5k + 5 down to
5k + 1 operations)

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 2 to k − 1 do
T← C0 & A0;
C0 ← C0 & A1;
C0 ← C0 ⊕ Ω;
C0 ← C0 ⊕ T;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;
A← x ⊕ y ;
C← 0;

. Main loop

for i = 1 to k − 1 do
C← C & A;
C← C⊕ B;
C← 2 · C;

end

. Aggregation
A← A⊕ C;

return A

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Secure addition

Addition with blinded operands

Input: (X = x ⊕ rx , Y = y ⊕ ry , rx , ry , γ) ∈ Z5
2k

Output: (S = (x + y)⊕ rs, rs = rx ⊕ ry)

. Initialization
B0 ← γ ⊕ X & Y ; T← X & ry ;
B0 ← B0 ⊕ T ; T← Y & rx ;
B0 ← B0 ⊕ T ; T← rx & ry ;
B0 ← B0 ⊕ T .B0 = x & y ⊕ γ
A0 ← X⊕ Y ; A1 ← rx ⊕ ry ;
C0 ← 2 · γ ; C1 ← 2 · γ;
Ω← C0 & A0 ⊕ B0;
Ω← C0 & A1 ⊕ Ω;
C0 ← 2 · B0;

. Main loop

for i = 2 to k − 1 do
T← C0 & A0;
C0 ← C0 & A1;
C0 ← C0 ⊕ Ω;
C0 ← C0 ⊕ T;
C0 ← 2 · C0 .C0 = C ⊕ 2γ

end

. Aggregation
A0 ← A0 ⊕ C0 ; A0 ← A0 ⊕ C1 .A0 = X⊕ Y⊕ C

return (A0, A1)

Basic addition

Input: (x , y) ∈ Z2k × Z2k

Output: s = x + y (mod 2k) = x ⊕ y ⊕ carry

. Initialization
B← x & y ;

Final algorithm

I We rearranged the operations to
obtain a better memory
management

I We also save a few more
operations

I The final cost 5k + 8 basic ops

I Faster than Goubin’s method
(5k + 21 ops)

12 / 16 COSADE 2014 − Paris, April 14–15, 2014

Outline

1 Preliminary Background
DPA attacks and countermeasures
Masking and switching method

2 A new DPA resistant addition algorithm
Basic algorithm
DPA resistant addition algorithm

3 Application to XTEA
XTEA overview
Preventing first-order DPA
Performance analysis

4 Conclusion

XTEA overview

XTEA is a lightweight cipher designed by Needham and Wheeler
32 rounds, 128-bit key length, 64-bit block length
Minimal key set-up: 32-bit part of the key used in each round
Security: combination of additions, shifts and XORs
Simple routine: Feistel structure with 32-bit word inputs (v0, v1),
without S-box

K[ai] + δi−1

v
(i−1)
0 v

(i−1)
1

v
(i+1)
0 v

(i+1)
1

v
(i)
1v

(i)
0

≪ 4
K[bi] + δi

≪ 4

≫ 5

≫ 5

13 / 16 COSADE 2014 − Paris, April 14–15, 2014

XTEA overview

XTEA is a lightweight cipher designed by Needham and Wheeler
32 rounds, 128-bit key length, 64-bit block length
Minimal key set-up: 32-bit part of the key used in each round
Security: combination of additions, shifts and XORs
Simple routine: Feistel structure with 32-bit word inputs (v0, v1),
without S-box

K[ai] + δi−1

v
(i−1)
0 v

(i−1)
1

v
(i+1)
0 v

(i+1)
1

v
(i)
1v

(i)
0

≪ 4
K[bi] + δi

≪ 4

≫ 5

≫ 5

13 / 16 COSADE 2014 − Paris, April 14–15, 2014

XTEA overview

XTEA is a lightweight cipher designed by Needham and Wheeler
32 rounds, 128-bit key length, 64-bit block length
Minimal key set-up: 32-bit part of the key used in each round
Security: combination of additions, shifts and XORs
Simple routine: Feistel structure with 32-bit word inputs (v0, v1),
without S-box

K[ai] + δi−1

v
(i−1)
0 v

(i−1)
1

v
(i+1)
0 v

(i+1)
1

v
(i)
1v

(i)
0

≪ 4
K[bi] + δi

≪ 4

≫ 5

≫ 5

13 / 16 COSADE 2014 − Paris, April 14–15, 2014

Preventing first-order DPA

Fresh 32-bit random masks w0 , w1 and γ are used for each
encryption process

V0 = v0 ⊕ w0 ,V1 = v1 ⊕ w1, γ is used with the secure addition
algorithm
Operations on the masked variables and the masks are
processed separately
The same masks are maintained across all rounds
At the end the masks (w0 ,w1) enable to get the unmasked
ciphertext

K + δ

v0 v1

≪ 4

≫ 5

K + δ

w0

≪ 4

≫ 5

v0

K + δ

w1 v1

≪ 4

≫ 5

γ γ

14 / 16 COSADE 2014 − Paris, April 14–15, 2014

Preventing first-order DPA

Fresh 32-bit random masks w0 , w1 and γ are used for each
encryption process

V0 = v0 ⊕ w0 ,V1 = v1 ⊕ w1, γ is used with the secure addition
algorithm
Operations on the masked variables and the masks are
processed separately
The same masks are maintained across all rounds
At the end the masks (w0 ,w1) enable to get the unmasked
ciphertext

K + δ

v0 v1

≪ 4

≫ 5

K + δ

w0

≪ 4

≫ 5

v0

K + δ

w1 v1

≪ 4

≫ 5

γ γ

14 / 16 COSADE 2014 − Paris, April 14–15, 2014

Preventing first-order DPA

Fresh 32-bit random masks w0 , w1 and γ are used for each
encryption process

V0 = v0 ⊕ w0 ,V1 = v1 ⊕ w1, γ is used with the secure addition
algorithm
Operations on the masked variables and the masks are
processed separately
The same masks are maintained across all rounds
At the end the masks (w0 ,w1) enable to get the unmasked
ciphertext

K + δ

v0 v1

≪ 4

≫ 5

K + δ

w0

≪ 4

≫ 5

v0

K + δ

w1 v1

≪ 4

≫ 5

γ γ

14 / 16 COSADE 2014 − Paris, April 14–15, 2014

Performance Analysis

Algorithms ROM [bytes] RAM [bytes] Cycles/byte
XTEA 114 16 60

masked XTEA (New alg.) 379 28 2410
” (Optimized Goubin) 395 (+4%) 28 2515 (+4%)

” (Neiβe and Pulkus ’04) 620 (+39%) 45 3180 (+24%)
” (Debraize ’12) 664 (+43%) 51 3403 (+29%)

Goal: implementation of protected XTEA using different
algorithms with the smallest memory footprint

The nibble size tested is k = 4 with LUTs methods
An optimized version of the Goubin method was implemented for
the tests (see Appendix in the paper)
C code, a 32-bit Intel based processor used for evaluation
The compilation options were chosen to favor small code size

New method is compact and fast
Saves at least 39% of the memory space compared to methods
based on LUTs
Up to 29% faster than LUTs methods

15 / 16 COSADE 2014 − Paris, April 14–15, 2014

Performance Analysis

Algorithms ROM [bytes] RAM [bytes] Cycles/byte
XTEA 114 16 60

masked XTEA (New alg.) 379 28 2410
” (Optimized Goubin) 395 (+4%) 28 2515 (+4%)

” (Neiβe and Pulkus ’04) 620 (+39%) 45 3180 (+24%)
” (Debraize ’12) 664 (+43%) 51 3403 (+29%)

Goal: implementation of protected XTEA using different
algorithms with the smallest memory footprint

The nibble size tested is k = 4 with LUTs methods
An optimized version of the Goubin method was implemented for
the tests (see Appendix in the paper)
C code, a 32-bit Intel based processor used for evaluation
The compilation options were chosen to favor small code size

New method is compact and fast
Saves at least 39% of the memory space compared to methods
based on LUTs
Up to 29% faster than LUTs methods

15 / 16 COSADE 2014 − Paris, April 14–15, 2014

Outline

1 Preliminary Background
DPA attacks and countermeasures
Masking and switching method

2 A new DPA resistant addition algorithm
Basic algorithm
DPA resistant addition algorithm

3 Application to XTEA
XTEA overview
Preventing first-order DPA
Performance analysis

4 Conclusion

Summary
Compact methods for adding 2 boolean masked variables

We devised a new addition algorithm
Approach differs from known switching methods

Application of new addition algorithm
Is efficient when one addition occur with any operation that is
compatible with boolean masking (boolean op., shift or rotation).
Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)

Security
Randomized, regular, transformed masking method
Protected against first-order DPA attacks

Attractive for smartcards
Minimal memory footprint
XTEA’s countermeasure and tests proved that it is well adapted to
32-bit cpus
With smaller word size (eg. 8-bit), the gain in speed is even more
significant

16 / 16 COSADE 2014 − Paris, April 14–15, 2014

Summary
Compact methods for adding 2 boolean masked variables

We devised a new addition algorithm
Approach differs from known switching methods

Application of new addition algorithm
Is efficient when one addition occur with any operation that is
compatible with boolean masking (boolean op., shift or rotation).
Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)

Security
Randomized, regular, transformed masking method
Protected against first-order DPA attacks

Attractive for smartcards
Minimal memory footprint
XTEA’s countermeasure and tests proved that it is well adapted to
32-bit cpus
With smaller word size (eg. 8-bit), the gain in speed is even more
significant

16 / 16 COSADE 2014 − Paris, April 14–15, 2014

Summary
Compact methods for adding 2 boolean masked variables

We devised a new addition algorithm
Approach differs from known switching methods

Application of new addition algorithm
Is efficient when one addition occur with any operation that is
compatible with boolean masking (boolean op., shift or rotation).
Applies to ARX based cryptosystems (XTEA, SKEIN, SAFER, etc)

Security
Randomized, regular, transformed masking method
Protected against first-order DPA attacks

Attractive for smartcards
Minimal memory footprint
XTEA’s countermeasure and tests proved that it is well adapted to
32-bit cpus
With smaller word size (eg. 8-bit), the gain in speed is even more
significant

16 / 16 COSADE 2014 − Paris, April 14–15, 2014

	Preliminary Background
	DPA attacks and countermeasures
	Masking and switching method

	A new DPA resistant addition algorithm
	Basic algorithm
	DPA resistant addition algorithm

	Application to XTEA
	XTEA overview
	Preventing first-order DPA
	Performance analysis

	Conclusion

