Implementation aspects of Keccak

Guido Bertoni¹, Joan Daemen¹, Michaël Peeters², <u>Gilles Van Assche¹</u>

Parts jointly with Nicolas Debande³, Thanh-Ha Le³, Ronny Van Keer¹

¹STMicroelectronics ²NXP Semiconductors

³Morpho

COSADE 2013, Paris, March 7-8, 2013

Outline

1 Zooming onto Keccak

- 2 Implementing KECCAK (how to cut a state)
- 3 Power-attacking Keccak
- 4 Power-protecting Keccak

The sponge construction

- More general than a hash function: arbitrary-length output
 Calls a *b*-bit permutation *f*, with b = r + c
 - r bits of rate
 - c bits of capacity ⇒ 2^{c/2} generic security [Eurocrypt 2008] and even better when keyed [SKEW 2011]

Кессак

- Instantiation of a sponge function
- the permutation Keccaκ-f
 - **7** permutations: $b \in \{25, 50, 100, 200, 400, 800, 1600\}$
- Security-speed trade-offs using the same permutation, e.g.,
 - SHA-3 instance: *r* = 1088 and *c* = 512
 - permutation width: 1600
 - security strength 256: post-quantum sufficient
 - Lightweight instance: r = 40 and c = 160
 - permutation width: 200
 - security strength 80: same as SHA-1

Use Keccak for regular hashing

- Electronic signatures, message integrity (GPG, X.509 ...)
- Data integrity (shaxsum ...)
- Data identifier (Git, Mercurial, online anti-virus, peer-2-peer ...)

Use Keccak for MACing

As a message authentication code

- Simpler than HMAC [FIPS 198]
 - HMAC: special construction for MACing with SHA-1 and SHA-2
 - Required to plug a security hole in SHA-1 and SHA-2
 - No longer needed for ΚΕCCAK which is sound

Use KECCAK for (stream) encryption

As a stream cipher

Single pass authenticated encryption

- Authentication and encryption in a single pass!
- Secure messaging (SSL/TLS, SSH, IPSEC ...)
- Same primitive ΚΕCCAK-f but in a (slightly) different mode
 - Duplex construction [SAC 2011]
 - Also for random generation with reseeding (/dev/urandom ...)

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

The state: an array of $5 \times 5 \times 2^{\ell}$ bits

$\boldsymbol{\theta}$ for linear diffusion

- **Compute parity** $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{x,y,z} = a_{x,y,z} \oplus c_{x-1,z} \oplus c_{x+1,z-1}$$

θ for linear diffusion

```
KECCAK-F[b](A) {
 forall i in 0...n.-1
    A = Round[b](A, RC[i])
 return A
Round[b](A,RC) {
  θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
                                                                  forall x in 0...4
 D[x] = C[x-1] \text{ xor } rot(C[x+1],1),
 A[x,y] = A[x,y] xor D[x],
                                                                  forall (x,y) in (0...4,0...4)
 \rho and \pi steps
 B[v, 2*x+3*v] = rot(A[x,v], r[x,v]).
                                                                 forall (x.v) in (0...4.0...4)
 χ step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0...4, 0...4)
  ι step
 A[0,0] = A[0,0] \text{ xor } RC
 return A
```

http://keccak.noekeon.org/specs_summary.html

ρ for inter-slice dispersion

- We need diffusion between the slices ...
- ρ : cyclic shifts of lanes with offsets

 $i(i+1)/2 \mod 2^{\ell}$

π for disturbing horizontal/vertical alignment

$$a_{x,y} \leftarrow a_{x',y'}$$
 with $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$

ho and π

```
KECCAK-F[b](A) {
 forall i in 0...n.-1
   A = Round[b](A, RC[i])
 return A
Round[b](A,RC) {
 θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
                                                                forall x in 0...4
 D[x] = C[x-1] xor rot(C[x+1],1),
 A[x,y] = A[x,y] xor D[x],
                                                                forall (x,y) in (0...4,0...4)
 \rho and \pi steps
 B[y, 2*x+3*y] = rot(A[x,y], r[x,y]),
                                                                forall (x,y) in (0...4,0...4)
 χ step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0...4, 0...4)
  ι step
 A[0,0] = A[0,0] \text{ xor } RC
 return A
}
```

http://keccak.noekeon.org/specs_summary.html

χ for non-linearity

- "Flip bit if neighbors exhibit 01 pattern"
- Operates independently and in parallel on 5-bit rows
- Algebraic degree 2, inverse has degree 3

χ for non-linearity

```
KECCAK-F[b](A) {
 forall i in 0...n.-1
    A = Round[b](A, RC[i])
 return A
Round[b](A,RC) {
 θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
                                                                 forall x in 0...4
 D[x] = C[x-1] xor rot(C[x+1],1),
 A[x,y] = A[x,y] xor D[x],
                                                                 forall (x.v) in (0...4.0...4)
 \rho and \pi steps
 B[v, 2*x+3*v] = rot(A[x,v], r[x,v]).
                                                                 forall (x.v) in (0...4.0...4)
 x step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),
                                                                 forall (x,y) in (0...4,0...4)
  ι step
 A[0,0] = A[0,0] \text{ xor } RC
 return A
```

http://keccak.noekeon.org/specs_summary.html

ι for breaking the symmetry

- XOR of round-dependent constant to lane in origin
- Without *ι*, the round mapping would be symmetric
 - invariant to translation in the z-direction
- Without *i*, all rounds would be the same
 - susceptibility to slide attacks
 - defective cycle structure
- Without *ι*, we get simple fixed points (000 and 111)

ι for breaking the symmetry

```
KECCAK-F[b](A) {
 forall i in 0...n.-1
   A = Round[b](A, RC[i])
 return A
Round[b](A,RC) {
 θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
                                                             forall x in 0...4
 D[x] = C[x-1] xor rot(C[x+1],1),
                                                             forall (x.v) in (0...4.0...4)
 A[x,y] = A[x,y] xor D[x],
 \rho and \pi steps
 B[v, 2*x+3*v] = rot(A[x,v], r[x,v]).
                                                             forall (x.v) in (0...4.0...4)
 χ step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0...4, 0...4)
 ι step
 A[0,0] = A[0,0] \text{ xor } RC
 return A
        http://keccak.noekeon.org/specs_summary.html
```

Outline

1 Zooming onto Keccak

2 Implementing KECCAK (how to cut a state)

- 3 Power-attacking Keccak
- 4 Power-protecting Keccak

Not cutting it: straightforward hardware architecture

- Logic for one round + register for the state
 - very short critical path \Rightarrow high throughput
- Multiple rounds can be computed in a single clock cycle
 - 2, 3, 4 or 6 rounds in one shot

Lanes: straightforward software implementation

- Lanes fit in 2^ℓ-bit registers
 - 64-bit lanes for Keccaκ-f[1600]
 - 8-bit lanes for Кессак-f[200]
- Very basic operations required:
 - θ XOR and 1-bit rotations
 - ρ rotations
 - π just reading the correct words
 - χ XOR, AND, NOT
 - ι just a XOR

Lanes: straightforward software implementation

- Faster than SHA-2 on all modern PC
- KECCAKTREE faster than MD5 on some platforms

C/b	Algo	Strength
4.79	keccakc256treed2	128
4.98	md5 <mark>broken!</mark>	64
5.89	keccakc512treed2	256
6.09	sha1 <mark>broken!</mark>	80
8.25	keccakc256	128
10.02	keccakc512	256
13.73	sha512	256
21.66	sha256	128

[eBASH, hydra6, http://bench.cr.yp.to/]

Bit interleaving

Ex.: map 64-bit lane to 32-bit words

- ρ seems the critical step
- Even bits in one word
 Odd bits in a second word
- $\blacksquare \ \mathsf{ROT}_{64} \ \leftrightarrow \ \mathsf{2} \times \mathsf{ROT}_{32}$
- Can be generalized
 - to 16- and 8-bit words
- Can be combined
 - with lane/slice-wise architectures
 - with most other techniques

[KECCAK impl. overview, Section 2.1]

Interleaved lanes for 32-bit implementations

- Speed between SHA-256 and SHA-512
- Lower RAM usage

C/b	RAM	Algo	Strength
41	300	sha256	128
76	260	keccakc256*	128
94	260	keccakc512	256
173	916	sha512	256

[XBX, ARM Cortex-M3, http://xbx.das-labor.org/]

*estimated for c = 256

Lane-wise hardware architecture

- Basic processing unit + RAM
- Improvements over our co-processor:
 - 5 registers and barrel rotator [Kerckhof et al. CARDIS 2011]
 - 4-stage pipeline, ρ in 2 cycles, instruction-based parallel execution [San and At, ISJ 2012]
- Permutation latency in clock cycles:
 - From 5160, to 2137, down to 1062

- **\mathbf{x}**, θ , π and ι on blocks of slices
- ρ by addressing
 [Jungk et al, ReConFig 2011]
- Suitable for compact FPGA or ASIC
- Performance-area trade-offs
 - Possible to select number of processed slices from 1 up to 32 [VHDL on http://keccak.noekeon.org/]

- **\mathbf{x}**, θ , π and ι on blocks of slices
- ρ by addressing
 [Jungk et al, ReConFig 2011]
- Suitable for compact FPGA or ASIC
- Performance-area trade-offs
 - Possible to select number of processed slices from 1 up to 32 [VHDL on http://keccak.noekeon.org/]

- **\mathbf{x}**, θ , π and ι on blocks of slices
- ρ by addressing
 [Jungk et al, ReConFig 2011]
- Suitable for compact FPGA or ASIC
- Performance-area trade-offs
 - Possible to select number of processed slices from 1 up to 32 [VHDL on http://keccak.noekeon.org/]

- **\mathbf{x}**, θ , π and ι on blocks of slices
- ρ by addressing
 [Jungk et al, ReConFig 2011]
- Suitable for compact FPGA or ASIC
- Performance-area trade-offs
 - Possible to select number of processed slices from 1 up to 32 [VHDL on http://keccak.noekeon.org/]

Cutting the state in lanes or in slices?

Both solutions are efficient, results for Virtex 5

Architecture	T.put	Freq.	Slices	Latency	Efficiency
	Mbit/s	MHz	(+RAM)	clocks	Mbit/s/slice
Lane-wise [1]	52	265	448	5160	0.12
Lane-wise [2]	501	520	151 (+3)	1062	3.32
Slice-wise [3]	813	159	372	200	2.19
High-Speed [4]	12789	305	1384	24	9.24

[1] Keccak Team, KECCAK implementation overview

[2] San, At, ISJ 2012

[3] Jungk, Apfelbeck, ReConFig 2011 (scaled to r = 1024)

[4] GMU ATHENA (scaled to r = 1024)

Outline

- 1 Zooming onto Keccak
- 2 Implementing KECCAK (how to cut a state)
- 3 Power-attacking Keccak
- 4 Power-protecting Keccak

A model of the power consumption

Consumption at any time instance can be modeled as

$$P=\sum_i T_i[d_i]$$

- **d_i:** Boolean variables that express *activity*
 - bit 1 in a given register or gate output at some stage
 - flipping of a specific register or gate output at some stage
- **T**_{*i*}[0] and T_i [1]: stochastic variables

Simplified model

$$P = \alpha + \sum_{i} \left(-1 \right)^{d_i}$$

DPA on a keyed sponge function

- 1 Attack the first round after absorbing known input bits
- 2 Compute backward by inverting the permutation

The KECCAK-f round function in a DPA perspective

 $\mathbf{R} = \iota \circ \boldsymbol{\chi} \circ \pi \circ \rho \circ \theta$

- Linear part λ followed by non-linear part χ
- $\lambda = \pi \circ \rho \circ \theta$: mixing followed by bit transposition
- χ : simple mapping operating on rows:

$$b_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2}$$

- Leakage exploited: switching consumption of register bit 0
- Value switches from a_0 to $b_0 + (b_1 + 1)b_2$
- Activity equation: $d = a_0 + b_0 + (b_1 + 1)b_2$

- Take the case M = 0
- We call *K* the input of χ -block if M = 0
- K will be our target

 \blacksquare We call the effect of ${\it M}$ at input of $\chi {:}~\mu$

$$\mu = \lambda(\mathbf{M}||\mathbf{0^c})$$

• Linearity of
$$\lambda$$
: $B = K + \lambda(M||0^c)$

 $d = a_0 + k_0 + (k_1 + 1)(k_2) + \mu_0 + (\mu_1 + 1)\mu_2 + k_1\mu_2 + k_2\mu_1$

Fact: value of $q = a_0 + k_0 + (k_1 + 1)k_2$ is same for all traces

Let M_0 : traces with d = q and M_1 : d = q + 1

- Selection: $s(M, K^*) = \mu_0 + (\mu_1 + 1)\mu_2 + k_1^*\mu_2 + k_2^*\mu_1$
- Values of μ_1 and μ_2 computed from M
- Hypothesis has two bits only: k_1^* and k_2^*

Correct hypothesis K • traces in M_0 : d = q• traces in M_1 : d = q + 1Incorrect hypothesis $K^* = K + \Delta$ • trace in M_0 : $d = q + \mu_1 \delta_2 + \mu_2 \delta_1$ • trace in M_1 : $d = q + \mu_1 \delta_2 + \mu_2 \delta_1 + 1$ **Remember:** $\mu = \lambda(M||0^c)$ random inputs *M* lead to random μ_1 and μ_2 Incorrect hypothesis: d uncorrelated with $\{M_0, M_1\}$

Result of experiments

Analytical prediction of success probability possible

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]

Outline

- 1 Zooming onto Keccak
- 2 Implementing KECCAK (how to cut a state)
- 3 Power-attacking Keccak
- 4 Power-protecting Keccak

Secret sharing

Countermeasure at algorithmic level:

- Split variables in *random* shares: $x = a \oplus b \oplus ...$
- Keep computed variables independent from native variables
- Protection against *n*-th order DPA: at least n + 1 shares

Software: two-share masking

•
$$\chi : x_i \leftarrow x_i + (x_{i+1} + 1)x_{i+2}$$
 becomes:

$$\begin{array}{rcl} a_i & \leftarrow a_i + (a_{i+1}+1)a_{i+2} + a_{i+1}b_{i+2} \\ b_i & \leftarrow b_i + (b_{i+1}+1)b_{i+2} + b_{i+1}a_{i+2} \end{array}$$

■ Independence from native variables, if:

- we compute left-to-right
- we avoid leakage in register or bus transitions

•
$$\lambda = \pi \circ \rho \circ \theta$$
 becomes:

$$\begin{array}{ll} a & \leftarrow \lambda(a) \\ b & \leftarrow \lambda(b) \end{array}$$

Software: two-share masking (faster)

- Making it faster!
- χ becomes:

$$\begin{array}{ll} a_i & \leftarrow a_i + (a_{i+1}+1)a_{i+2} + a_{i+1}b_{i+2} + (b_{i+1}+1)b_{i+2} + b_{i+1}a_{i+2} \\ b_i & \leftarrow b_i \end{array}$$

Precompute $R = b + \lambda(b)$ $\lambda = \pi \circ \rho \circ \theta$ becomes:

$$\begin{array}{rcl} a & \leftarrow \lambda(a) + R \\ b & \leftarrow b \end{array}$$

Software: two-share masking (faster)

- Making it faster!
- χ becomes:

$$a_i \leftarrow a_i + (a_{i+1}+1)a_{i+2} + a_{i+1}b_{i+2} + (b_{i+1}+1)b_{i+2} + b_{i+1}a_{i+2}$$

Precompute $R = b + \lambda(b)$ $\lambda = \pi \circ \rho \circ \theta$ becomes:

$$a \leftarrow \lambda(a) + R$$

Hardware: two shares are not enough

Unknown order in combinatorial logic!

$$a_i \leftarrow a_i + (a_{i+1}+1)a_{i+2} + a_{i+1}b_{i+2}$$

Using a threshold secret-sharing scheme

Idea: incomplete computations only

Each circuit does not leak anything

[Nikova, Rijmen, Schläffer 2008]

Number of shares: at least 1 + algebraic degree

3 shares are needed for χ

Glitches as second-order effect

- A glitch can leak about two shares, say, a + b
- Another part can leak c
- ⇒ as if two shares only!

Using a threshold secret-sharing scheme

Idea: incomplete computations only Each circuit does not leak anything

[Nikova, Rijmen, Schläffer 2008]

Number of shares: at least 1 + algebraic degree

3 shares are needed for χ

Glitches as second-order effect

- A glitch can leak about two shares, say, a + b
- Another part can leak c
- \blacksquare \Rightarrow as if two shares only!

Using a threshold secret-sharing scheme

Idea: incomplete computations only

 Each circuit does not leak anything [Nikova, Rijmen, Schläffer 2008]

Number of shares: at least 1 + algebraic degree

3 shares are needed for χ

- Glitches as second-order effect
 - A glitch can leak about two shares, say, a + b
 - Another part can leak c
 - \blacksquare \Rightarrow as if two shares only!

Three-share masking for χ

• Implementing χ in three shares:

$$\begin{array}{rcl} a_i & \leftarrow b_i + (b_{i+1}+1)b_{i+2} + b_{i+1}c_{i+2} + c_{i+1}b_{i+2} \\ b_i & \leftarrow c_i + (c_{i+1}+1)c_{i+2} + c_{i+1}a_{i+2} + a_{i+1}c_{i+2} \\ c_i & \leftarrow a_i + (a_{i+1}+1)a_{i+2} + a_{i+1}b_{i+2} + b_{i+1}a_{i+2} \end{array}$$

One-cycle round architecture

Three-cycle round architecture

Parallel vs sequential leakage

Generalization of results for protected implementation

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]

Some references (1/2)

Main references

- Van Keer and KT, Keccak implementation overview
- Debande, Le and KT, PA of HW impl. protected with secret sharing, HASP 2012 + ePrint 2013/067
- Note on side-channel attacks and their counterm..., NIST hash forum 2009
- Виіlding power analysis resistant implementations of Кессак, SHA-3 2010
- Software implementations and benchmarks
 - Bernstein and Lange, eBASH
 - Wenzel-Benner and Gräf, XBX
 - Balasch et al., CARDIS 2012

Optimized implementations available at http://keccak.noekeon.org/

Some references (2/2)

Hardware benchmarks and implementations on FPGA

- Kerckhof et al., CARDIS 2011
- Jungk and Apfelbeck, ReConFig 2011
- San and At, ISJ 2012
- Gaj et al.; Mahboob et al.; Kaps et al.; SHA-3 2012
- Hardware benchmarks and implementations on ASIC
 - Henzen et al., CHES 2010
 - Tillich et al., SHA-3 2010
 - Guo et al., DATE 2012
 - Gurkaynak et al.; Kavun et al.; SHA-3 2012

VHDL code available at http://keccak.noekeon.org/

Conclusions

Questions?

