

Simulated versus Experimental

Differential Power Analysis of an AES Software Implementation on ARM

Ruggero Susella

Be able to predict the possibility to attack a software implementation

- Without needing a real hardware to run it
- Use a simulator and a very simple estimation for the power consumption
 - And see if it reflects reality
- Final goal is to gain confidence that countermeasures tested in simulation will work on the real device

• C implementation of AES taken from OpenSSL

- Big Tables (4 T-Tables)
- Performing Sbox + ShiftRow + Mixcolumns
- Fully unrolled
- 9 equal rounds
- 1, final, different round

Crosscompiled with gcc for ARM926

• Disabled all optimizations

Workbench for Experimental

Workbench 5

Oscilloscope

- Waits for trigger
- Averages out the trace
- Saves the trace

PC Linux

- Commands the board
- Cross-compiles for ARM

SPEAr board

- Runs crypto algorithm
- Generates trigger

SPEAr board

Oscilloscope

- Agilent Infiniium
- Features:
 - Windows XP
 - Max 40 Gsa/s
 - Max 2M samples
 - 4 Channels

- Differential Probe
 - Voltage difference measurement on a resistor
- Simple probe
 - Trigger detection

Single Power Trace

Workbench for Simulation

• Execution is simulated in a software environment

- At assembler level
- Simulator supports ARMv5 instructions
 - No specific knowledge of the hardware is required
- Execution results in a txt file
- Each row contains the value of all registers after the execution of a single line of asm code

Post processing & Final Trace

- A post processing replaces each row with its Hamming Weight
 - We wanted to test the simplest possible leakage model
 - With more information about the hardware better models are possible
- Each simulated traces consists in 1299 HW values
 - One for each asm line executed
 - Each value can vary between 0 and 512 (16 registers of 32 bit)

Single Simulated Trace 12

Results

Mean of 1000 Traces 14

Variance of 1000 Traces 15

First Round Attack (1/3) 16

First Round Attack (2/3)

First Round Attack (3/3) 18

- In our setup 100 simulated traces provides comparable result as 16000 experimental traces
- Traces have common behavior
 - Mean
 - Variance
 - Attack's peak location and shape

 Hamming Weight of all registers is a good approximation of power consumption

Thank you! Questions ?

