INSPIRING INNOVATION | INNOVANTE PAR TRADITION

www.emse.fr

COSADE 2013

Discussion on the Model of Laser Induced Faults in SRAM Memory cells

Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, Assia Tria, Mathieu Lisart Secured Architecture and System Laboratory – Centre Microélectronique de Provence - Gardanne

- Faults are often modeled according two fault models:
 - Bit Set (resp. Reset)
 - Bit Flip
- Not much analysis on the fault model in SRAM:
 - Faults type
 - Effects of the fault injection on the SRAM

Analyze the fault model on SRAM memory cell

- Introduction
 - Fault model
 - Fault injection mechanism
 - Sensitivity zones
- Experiments on the SRAM cell
 - Description of the SRAM memory cell

Contents

- Sensitivity map
- Spice Simulation
 - Sensitivity map
 - Simulation on the edge zone
- Conclusion & Perspectives

INSPIRING INNOVATION

Introduction

www.emse.fr

Bit set(resp. reset)

INNOVANTE PAR TRADITION

- Its value is changed: '0' => '1'(resp. '1'=>'0')
- Result in a calculation error
- Unfaulted if its value was already '1'(resp. '0')
- Allow to mount safe error attacks

Bit flip

- Independent of the data value ('0' => '1 or '1' => '0')
- Induces a calculation error
- Better fault injection rate
- Quicker analysis of the faulted results

INSPIRING INNOVATION

Introduction

Fault injection mechanism

- Creation of electron-hole pair along the laser beam due to the photoelectric effect
- Stretch the electric field

INNOVANTE PAR TRADITION

- Creation of a transient current
- Possible SEE on PN junction
 - Source and drain of transistors

Introduction

Sensitivity zones

- Inverter's case:
 - **2**st Case (output = '**0**')
 - PMOS ONF
 - NMOS ONF
 - Only a strike on drain of RMOS will discologer greet head and and and the ogepthest at put state

The sensitivity zone is the drain of the OFF RMOS transistors

SRAM Memory Cell

Configuration SRAM
(programmable logic)

- 5 transistors
- 0.25µm CMOS Technology
- Size: 9µm x 4µm

Faults Injection

www.emse.fr

INSPIRING INNOVATION

VATION INNOVANTE PAR TRADITION

Experimental setup

- Front side fault injection
- 1064nm wavelength
- Spot size: 1µm
- Pulse duration: 50 ns
- Energy from 1W to 1.6W
- SRAM grid pattern: 0.2µm

SRAM Memory Cell

SRAM Memory Cell

Sensitivity zones

- Laser spot size of 1µm
 - Sensitivity zones extended
 - Bit set and reset zones overlap
 - For some positions: faults injected should be bit flip

Faults Injection

INSPIRING INNOVATION INNOVANTE PAR TRADITION

Sensitivity map of the memory cell

Red zone and blue zone do not overlap.

www.emse.fr

- No bit flip
- Only 3 zones are really sensitive.

• SPICE simulation on the edge zone

SPICE Simulation

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

- Based on the model of Sarafianos et al.[1]
 - Model developed with 90nm CMOS technology
 - Using Voltage controlled current source
 - Multiple current sources (several sensitive zones)

SPICE Simulation

www.emse.fr

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

First simulation

- Similar to the experiments
- Same hidden zone
- No bit flip

SPICE Simulation

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

www.emse.fr

Simulation of the edge zone

- Current injected on the drain of MN2
- Current of MP2 in opposition
- State has already changed
- Fault is injected (bit set)

15

SPICE Simulation

www.emse.fr

INSPIRING INNOVATION INNOVANTE PAR TRADITION

Simulation of the edge zone

- Current injected in drain of MN1
- Two other current are in opposition
- No fault injected

Conclusion & Perspectives

- No bit flip
 - Despite the laser beam effect zone (Ø 1µm & 5µm)
 - Energy between 1W and 1.6W
 - Balanced current that avoid fault
- Good correlation between simulation and experimentation
 - Same edge zone
 - Analyze the hidden zone
 - Countermeasures will be investigated in future works

www.emse.fr

INSPIRING INNOVATION

Thank you for your attention.

Questions?