Updated Recommendations for Blinded Exponentiations vs. Single Trace Analysis

COSADE Workshop - Paris, 7 March 2013.

Christophe Clavier XLIM-CNRS Limoges University, France

Benoit Feix UL Security Lab, UK XLIM, Limoges University, France Work done when author was with Inside Secure

Exponentiation and side-channels

- **Chosen message scenario**
- **Relaxed side-channel leakage models**
- Countermeasures
- Conclusion

Exponentiation and side-channel Some previous publications ...

- 1996 Kocher et al.: simple side-channel analysis (SSCA)
- 1999 Messerges : differential side-channel analysis (DSCA)
- 2001 Walter: Big-Mac Attack
- 2005 Yen et al.: chosen messages on protected exponentiations
- 2010 Courrège et al.: SSCA study on blinded exponentiation
- Not an exhaustive list ...

Notations

- $x = (x_{l-1}, ..., x_0)_b$ x decomposition in base b (t-bit words)
- LIM(x, y): Long Integer Multiplication $x \times y$
- BarrettRed(*a*,*n*): Barrett modular reduction *a* mod *n*
- ModMul(x,y,n) = BarrettRed(LIM(x,y),n)

Exponentiation

Algorithm 2.1 Long Integer Multiplication

Require: $x = (x_{\ell-1}x_{\ell-2} \dots x_1x_0)_b, y = (y_{\ell-1}y_{\ell-2} \dots y_1y_0)_b$ Ensure: multiplication result $\mathsf{LIM}(x, y) = x \cdot y$ 1: for i = 0 to $2\ell - 1$ do 2: $w_i \leftarrow 0$ 3: for i = 0 to $\ell - 1$ do 4: $c \leftarrow 0$ 5: for j = 0 to $\ell - 1$ do 6: $(uv)_b \leftarrow w_{i+j} + x_j \cdot y_i + c$ 7: $w_{i+j} \leftarrow v$ and $c \leftarrow u$ 8: $w_{i+\ell} \leftarrow c$ 9: return w

Algorithm 2.2 Exponentiation

Require: integers m and n with m < n, k-bit exponent $d = (d_{k-1}d_{k-2} \dots d_1d_0)_2$ Ensure: $\operatorname{Exp}(m,d,n) = m^d \mod n$ 1: $R_0 \leftarrow 1$; $R_1 \leftarrow m$ 2: for i = k - 1 down to 0 do 3: $R_0 \leftarrow \operatorname{ModMul}(R_0, R_0, n)$ 4: if $d_i = 1$ then $R_0 \leftarrow \operatorname{ModMul}(R_0, R_1, n)$ 5: return R_0

Blinded Exponentiation

Algorithm 2.3 Blinded exponentiation Require: integers m and n with m < n, $\ell \cdot t$ -bit exponent $d = (d_{\ell \cdot t-1}d_{\ell \cdot t-2} \dots d_1d_0)_2$, a security parameter λ Ensure: $\operatorname{Exp}(m,d,n) = m^d \mod n$ 1: $r_1 \leftarrow random(1, 2^{\lambda} - 1)$ 2: $r_2 \leftarrow random(1, 2^{\lambda} - 1)$ 3: $R_0 \leftarrow 1 + r_1 \cdot n \mod r_2 \cdot n$ 4: $R_1 \leftarrow m + r_1 \cdot n \mod r_2 \cdot n$ 5: $i \leftarrow \ell \cdot t - 1$; $\alpha \leftarrow 0$ 6: while $i \ge 0$ do 7: $R_i \leftarrow \operatorname{ModMul}(R_0, R_\alpha, n)$ 8: $\alpha \leftarrow \alpha \oplus d_i$; 9: $i \leftarrow i - 1 + \alpha$ 10: return R_0

- Loop operation : atomicity principle from Chevallier-Mames et al.
- Exponent message blinding

 $d^* = d + r.\varphi(n)$ (*r*: λ -bit random)

ightarrow not useful here as our analysis focuses on a single trace

Side Channel Leakage on Multiplier First leakage model

 $[A_0]$ A null word $x_i = 0$ in some operand x (a so-called *tag*) provokes a particularly visible leakage during LIM(x,y).

For atomic left-to-right exponentiation, a tag on the message m can leak on every LIM(a,m) which reveals the secret exponent d.

Study done by Courrège et al. on random messages

 \rightarrow leakage probability were given depending on multiplier base bit size *t*,

 \rightarrow showed bias in $u = r_1 \mod r_2$ in additive message blinding

 $m^* \leftarrow m + u.n$ when r_1 and r_2 are chosen both randomly.

Exponentiation and side-channels

Chosen message scenario

Relaxed side-channel leakage models

Countermeasures

Conclusion

Chosen Message Scenario

- It is possible to choose *m* such that some particular word m_i^* is tagged whenever *u* takes some specific value $u^{(i)}$.
- It is even possible to simultaneously target *I* different random values $u^{(i)}$

```
m_0^* is tagged for u^{(0)}
```

```
m_1^* is tagged for u^{(1)}
```

. . .

```
m_{l-1}^* is tagged for u^{(l-1)}
```

 This increases the probability for a blinded message m* to be tagged.

Chosen Message Scenario

How to target simultaneously many random values u⁽ⁱ⁾ on message m^{*}

Algorithm 3.1 Chosen message construction

Require: a ℓ -word modulus n and a set $(u^{(0)}, \ldots, u^{(\ell-1)})$ of targeted randoms **Ensure:** a message m whose randomization is tagged for any specified target

1: $m \leftarrow 0$ 2: for i = 0 to $\ell - 1$ do 3: $s^{(i)} \leftarrow u^{(i)} n$ 4: $\mu \leftarrow -\left\lfloor \frac{\overline{s_i^{(i)}} + m_i}{b^i} \right\rfloor \mod b$ 5: $m \leftarrow m + \mu b^i$ 6: return m

$$\overline{x_i} = x \mod b^{i+1} = (x_i \dots x_1 x_0)_b$$

$$\underline{x_i} = x \mod b^i = (x_{i-1} \dots x_1 x_0)_b \quad \text{with} \quad \underline{x_0} = 0$$

Chosen Message Scenario

- Tag⁽ⁱ⁾(m^*) occurs either if $u=u^{(i)}$ or by pure chance on a *t*-bit word
- Proba(tag⁽ⁱ⁾(m^*)) = Proba($u=u^{(i)}$) + 2^{-t}

 $= 2^{-\lambda} + 2^{-t}$ $\approx \max(2^{-\lambda}, 2^{-t})$

- *m*^{*} is tagged whenever it is tagged on any of its words *m*^{*}_i.
- Proba(tag(m^*)) $\approx l.max(2^{-\lambda}, 2^{-t})$
- If random bit-length is lower than base length we gain factor $2^{t-\lambda}$
- Optimal blinding requires $\lambda = t$.
- If r₁ and r₂ are uniformly distributed, then smaller u values are more probable and one should preferably choose u⁽ⁱ⁾=i
- Gain a factor 21 for the tag probability for $\lambda = 32$, t = 64, (1024 bits).

Simulation results

• Simulation results of the chosen message attack for a 1024-bit RSA modulus with biased randomization.

		Tag pro	bability			$\sin \omega$	
		Simu	Theory	Simu	Theory	Simu	Theory
	t = 16	6.5010^{-1}	6.5110^{-1}	1.54	1.54	2.60	2.60
$\lambda = 8$	t = 32	4.2810^{-1}	4.2810^{-1}	2.33	2, 33	3.43	3.43
(10^6 runs)	t = 64	2.6310^{-1}	2.6210^{-1}	3.80	3.81	4.21	4.20
$\lambda = 16$	t = 16	8.3010^{-3}	8.3010^{-3}	121	121	8.50	8.50
$\lambda = 16$	t = 32	4.4910^{-3}	4.4810^{-3}	223	223	9.19	9.18
(10^7 runs)	t = 64	2.4210^{-3}	2.4110^{-3}	414	415	9.89	9.86
> 04	t = 16	_	_	_	_		
$\lambda = 24$	t = 32	2.7710^{-5}	2.8110^{-5}	36062	35590	14.5	14.7
(10^8 runs)	t = 64	1.4810^{-5}	1.4710^{-5}	67476	68049	15.5	15.4
$\lambda = 32$	t = 16					—	
	t = 32	_	—		—	—	—
(10 ⁹ runs)	t = 64	8.310^{-8}	7.7810^{-8}	12.010^{6}	12.810^{6}	22.3	20.9

Instead of 8.7 10⁻¹⁹ in random message scenario. (1.15 10¹⁸ traces)

Exponentiation and side-channels Chosen message scenario Relaxed side-channel leakage models Countermeasures Conclusion

Relaxed side-channel leakage models

- Previous leakage model was:
- [A₀] : side-channel tag originates when a whole *t*-bit word equals zero in the operand *m*.
- We consider two less restrictive but realistic leakage models
- $[A_1]$: side-channel tag originates from the fact that at least τ consecutive bits in a *t*-bit word of *m* are set to zero, with $\tau < t$.
- $[A_2]$: side-channel tag originates from the fact that the Hamming weight *h* of the *t*-bit word is lower than a value v, with $h \le v < t$.

Relaxed side-channel leakage models

• Probability for an operand *m* to be tagged is:

 $Proba(tag(m)) = 1 - (1-p)^{l} \approx l.p$

where *p* is the probability that a word is tagged.

- Model [A₁] (consecutive zeros)
 - Exhaust n_{τ} the number of existing *t*-bit words with their longest consecutive zero sequence being of length τ .
 - $p_1(t, \tau) = n_{\tau} 2^{-t}$ the probability for a *t*-bit word to have its longest sequence of consecutive zero bit to be exactly τ .

-
$$\rho = \sum_{i=\tau}^{t} \rho_1(t, i)$$

Relaxed side-channel leakage models [A₁] Examples

au	t-bit word number	$p_1(t, \tau)$	$P(tag_{A_1}^{(i)}(x))$	$P(tag_{A_1}(m_{512}))$	$P(tag_{A_{1}}(m_{1024}))$	$P(tag_{A_1}(m_{2048}))$
0	1	2.3310^{-10}	1	1	1	1
8		2.5910^{-02}		$5.61 10^{-01}$	8.0810^{-01}	9.6310^{-01}
16		7.2510^{-05}		2.2010^{-03}	4.3910^{-03}	8.7510^{-03}
24	704	1.6410^{-07}	2.9810^{-07}	4.7710^{-06}	9.5410^{-06}	1.9110^{-05}
32	1	2.3310^{-10}	2.3310^{-10}	3.7310^{-09}	7.4510^{-09}	1.4910^{-08}

Table 3. [A₁] Leakage probability examples for some τ values when t = 32

- Probability a 1024-bit integer is tagged reduced from 7,45.10⁻⁹ to 4,39.10⁻³ from model [A₀] to model [A₁] with τ = 16.
- Then 1480 messages are required instead of 8,73.10⁸ for attack success probability at 0.999.

Relaxed side-channel leakage model [A₂]

- Model [A₂] (small Hamming weight)
 - $p_2(t, \mu) = {\mu \choose t}$. 2^{-t} the probability that a *t*-bit word has its Hamming weight equal to μ .
 - $\rho = \sum_{\mu=0}^{\nu} \, \rho_2(t,\mu\,)$

Relaxed side-channel leakage models [A₂]

ν	t-bit word number		4		$P(tag_{A_2}(m_{1024}))$	$P(tag_{A_2}(m_{2048}))$
0	1	2.3310^{-10}	2.3310^{-10}	3.7310^{-09}	7.4510^{-09}	1.4910^{-08}
4	35960	8.3710^{-06}	9.6510^{-06}	1.5410^{-04}	3.0910^{-04}	$6.17 10^{-04}$
8		2.4510^{-03}		$5.46 10^{-02}$	1.0610^{-01}	$2.01 10^{-01}$
16		1.4010^{-01}		1	1	1
24		2.4510^{-03}		1	1	1
32	1	2.3310^{-10}	1	1	1	1

Table 5. [A₂] Leakage probability for some ν values when t = 32

- Probability a 1024-bit integer is tagged reduced from 7.45 10^{-9} to 3.09 10^{-4} from model [A₀] to model [A₂] with V = 4.
- Then 2.1 10⁴ messages are required instead of 8.73 10⁸ for attack success probability at 0.999.

Comparison example

τ, ν	t-bit word number	р	$P(tag_{A_i}(m_{512}))$	$P(tag_{A_{i}}(m_{1024}))$	$P(tag_{A_{i}}(m_{2048}))$
$[A_2] \nu = 4$	8.3710^{-06}	$9.65 10^{-06}$	1.5410^{-04}	3.0910^{-04}	6.1710^{-04}
$[A_1] \tau = 16$	7.2510^{-05}	1.3710^{-04}	2.2010^{-03}	4.3910^{-03}	$8.75 10^{-03}$
$[A_0]$	2.3310^{-10}	2.3310^{-10}	3.7310^{-09}	7.4510^{-09}	1.4910^{-08}

Table 6. Leakage probability examples for t=32

τ, ν	m_{512}	m_{1024}	m_{2048}
$[A_2] \nu = 4$	4.2210^4	2.1110^4	1.0610^{3}
$[A_1] \tau = 16$	310^{3}	1.510^{3}	750
$[A_0]$	1.7510^{9}	8.7310^8	4.3710^8

Table 7. Number of messages/executions needed for leakage probability at 0,999, for t=32

Exponentiation and side-channels Chosen message scenario Relaxed side-channel leakage models Countermeasures

Conclusion

Countermeasures

- Evaluate precisely the leakage characteristics of the hardware multiplier
 - Determine τ and ν for both leakage models [A₁] and [A₂] and leakage probabilities
- Practical results on an IC will also depends on
 - The efficiency of the hardware countermeasures present in the device
 - Signal processing capabilities
- Prefer right-to-left to left-to-right algorithms for the implementation
- And\or apply new randomization on message after each modular multiplication

Exponentiation and side-channels Chosen message scenario Relaxed side-channel leakage models Countermeasures Conclusion

Conclusion

- We have given a chosen message attack improvement which justifies to choose $\lambda = t$ on blinded exponentiations.
- We evaluated attack efficiency in two relaxed but realistic leakage models.
- It justifies the need for a precise leakage characterization of hardware multipliers.

Thanks for your attention ...

