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Motivation

« What is theory 7?7

« Mathematical formalism vs. reasoning vs. providing
evidence vs. falsifying

« What can it do for us ??

» Write statements clearly

« Make claims that can either be proven mathematically
or falsified by some experiment

« Where does it most impact ??
« Probably in the areas of evaluation/testing




Outline

« Example 1: masking schemes

. What kind of theory
. How it is used
» How does it relate to practice

« Example 2: distinguishers

 Like for like comparison
« Precise definition: ‘generic’

« Example 3: leakage detection
 Like for like comparison
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Provably secure masking schemes

Masking refresher:

. Want to conceal any/all
intermediate values by random
values (these are called masks)

« Picture shows how such masks
may be introduced in SW

« AES example:

« ARK: linear operation (®), used
to re-mask values

. SB: S, (vm) = S(v)®&m’, mask
changed m -> m’

. SR: all state bytes use the
same mask, no change

. MC: requires 2 or more masks
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Provably secure masking (historically)

« Need to define 'conceal' mathematically

« Unpredictable (given leakage)? Too strong
. Indistinguishable (given leakage)? Too strong

« Need to put potential definition in context with
concrete attack

« DPA style adversary requires to predict intermediate
values for several traces

- Secure against DPA if attacked intermediate values are
distributed uniformly at random OR have same distribution
irrespective of (plaintext, key)

- This really is a necessary condition for security but it is
not sufficient
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Provably secure masking, cont.

« S0 prove that distribution of any intermediate value
Is iIndependent of the inputs

. How do you specify intermediate values

- Practice shows that, e.g. in hardware implementations this is
not fully achievable

» But is that a security proof?

« Not in the sense that it gives no guarantee about the
‘entire’ cipher/implementation, i.e. the composition of
operations that happens in practice is outside of the
scope of the proof

« We all know about the problem with glitches in hardware and
that it renders masking almost entirely useless
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Breaking provably secure masking

. But what about a 'good’' software implementation?

« Assume first or second order masking, and that great
care was taken so that there is no first order leak in
encryption rounds

« Remember our previous proof is concerned with
Isolated intermediate values only, so e.g. it says
nothing about any leakage of a sequence of using the
same mask in an encryption round

» Clearly this means HO attacks are not dealt with
. Prime target: the computation of the Table S,
e S, (VM) =S(v)em’

. | call mthe adress mask and m‘ the data mask
~ - P & L o ol —




Breaking PS masking, cont.

Focus our attention hence on the computation of the
masked table

« Either on the fly (unlikely to happen in practice as it is
very inefficient), or prior to the encryption

« Either way this leads to a 'nice' easily identifiable
pattern in a power trace

« Assume that it hasn't just been implemented naively but
with some randomisation
- Random start index
- LFSR based random walk
- (small) permutation
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Breaking PS masking, cont.

Only an unrealistically large permutation choice prevents this attack,
this conclusion holds also for arithmetic masking and second order

Boolean masking. See a forthcoming paper by Tunstall et al.,
2013.
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Breaking PS masking, cont.

» Clearly the gap in the 'proof' implied such an attack
IS conceivable

« The proof only covered an isolated intermediate value

« An actual proof for a secure masking scheme w.r.t. an
attack of order d would need to argue that any

combination of up to d values would not leak enough
information

» Masking against Side Channel Attacks: a Formal
Security Proof, Prouff & Rivain, forthcoming
(Eurocrypt 2013)
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Distinguishers ...

« Now which statistic am | going to choose for my
attacks today ....?7

. Lot's of options, lot's of opinions, but are there any
'hard facts'?

« We need some method to make like-for-like
comparisons

« Experiments are a good way initially but we need to be
wary of limitations when working with ‘real' data

- Estimation, what is actual power model, noise margin
. We want to compare distinguishers not devices!
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Distinguishers, cont.

« Mangard et al. 2011, 'All for one' paper, IET:

« Correlation, DoM, and MI are equivalent in 'noisy’
enough settings

» Doget et al., 2011, 'Univariate leakage models',
JCEN:

» Can 'translate' one attack, i.e. attacker power model, in
'any' other (PPA, CPA, etc.)

« None of these papers, methods though can be
used to analyse MI, nor can they cope with e.g.
skewed distributions (noise, data, masks) etc.

Mt e Ao st —
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Distinguishers, cont.

« Theoretic distinguishing

vec_to rs computationally Correlation based distinguisher
derived from fully defined _ 1‘”3’3 o
distribution s 8
. g 3
. No estimation 8 S
5 o
« Properties of = g
distinguishing vectors, 3 -

such as NR margin

relevant for practice

0 10 20 30 40 50 60

o Whitnall & O., 2011, 'Fair Offset from correct key (k© k*)
comparison framework O Truekey © Nearest rival
...", Crypto 2011

. At i A ol —

13



Distinguishers, etc.

« Theoretic DV shows true underlying features:

Nearest-rival distinguishing score

=l

« Picture gives evidence
that MIA in a noisy
scenario reflects is
extreme noise sensitivity

. It can even benefit from

Distinguishing score

. . S e e e e e e )

noise: stochastic 6125 05 2 8 a2 12
Signal-to—-noise ratio

resonance —E— MIA(ID) —F— MIA(HW) —S— CPA(HW)

» Because we are working with theoretic DV we can
be sure that this is not a statistical artefact!

» Conclusion: MIA marginally better than CPA
. Pre_lctic‘aHIIy CPA will outperform Mlﬁin near%llﬁcontextg
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Distinguishers: genericity

« Another strength of theory is that of having 'formal’
definitions

« Not so much about a scary use of Greek symbols
» But the attempt to precisely specify what one means

» Example: what is 'generic' DPA?

« DPA that can be applied in all contexts?

« DPA that makes no assumptions about the
device/leakage model?

« DPA that uses a generic distinguisher (whatever that
might be)?

¥) FUSSEEN'Y | PN - ——Foflo— —

15



Distinguishers: genericity, cont.

« NO precise definition existed and so different
papers approached this differently and discussion
mostly centred around 'generic’ distinguishers

« However none of the methods seemed to be able to
cope with a bijective S-box unless some power model
was supplied ...

. Whitnall et al., ePrint, 'Myth & Magic, 2012:
» Genericity is a property of the power model

16



Distinguishers: genericity, cont.

A generic power model is a nominal approximation

of the leakage function

« Thatis intermediate
values are used to
separate the true
leakage

Power model

A generic distinguisher
then is a statistic that

A
Direct Stochastic Bayesian
approximation profiling templates
Proportional Pearson’s
approximation correlation
: Spearman’s
Ord_malf rank
aPPrOXIMALON correlation
Nominal MIA, Linear
.. | Kolmogorov :
approximation . regression
-Smirnov S
Minimal Demanding

Assumptions on noise

can cope with such a nominal model
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Distinguishers: genericity, cont.

« Now we have a 'clean' definition, so WHAT?

. Nominal models essentially 'classity' power value,
this links to classification theory

« Provides notions to study properties of nominal power
models:

- Precision: prob. that items grouped together belong together

- Recall: prob. that items that belong together are identified as
such

« One can show that any injective composition of
target and leakage function gives perfect recall so
an attack cannot succeed

_«_A further, seargh for distinguisheys is henge futile
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Distinguishers: genericity, cont.

» Clearly to succeed with a nominal power model in
any attack on injective targets some form of
'additional knowledge' is necessary

» But does it need to be device specific?
. Linear regression based attacks

« Recover key AND deliver power model

» Ever looked at those power models?

- The models for the incorrect key hypotheses (even for simple
leakage functions) look 'weird" (unsurprisingly)

. If only one could identify the key via one's 'gut
feeling' about the power models ...
A i P il -
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Distinguishers: genericity, cont.
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Distiniguisher: genericity, cont.

. Stepwise LR: a model building tool used in the
machine learning community

. 'Weird' power models: have lots of terms with little
contribution/explanatory power

. Stepwise LR will (when appropriately configured) will
actually omit these terms from the models

- This means also that their contributions to the R? vector which
distinguishes the key hypotheses disappears and so key
candidates get different R%. Hence an attack can succeed

« We call this 'generic emulating’

. Whitnall et al. “Towards DPA attacks without device specific
assumptions’ (aka the ‘myth and magic paper’, which can be

] foqnd on ePrinp_ _ " b B
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Distinguishers: genericity, cont.

« An aside: stepwise LR is a kind of 'middle ground’
with regards to profiling

« One can use it on unknown devices to recover a 'good
enough' power model for DPA key recovery

« Number of traces, and quality of recovered power
model indeed lies well between the optimal DPA (using
the true power model) and the most expensive
templating methods

« Whitnall & O.: 'Profiled DPA: Efficacy and
Efficiency Trade-offs', in submission
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Leakage detection: web apps

Mental health
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Leakage detection: web apps, cont.

Web applications are part of our every day dealings
online: health services, tax applications, search
applications, etc. The interaction between client
and server is leaky.

Example trace sampled from a popular online health website

T T

1500

1000

Total packet size (bytes)

500

0 10 20 30 40 50 60
Index of packet in sequence
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Leakage detection, cont.

» Leakage detection: spot any point which 'appears’
to have non-zero information

. Leakage estimation: take such a point and try and
compute or estimate precisely how 'big’ this leak is

. Leakage exploitation: take such a point, and use it
iIn some sort of attack

We cannot 'map’ easily from one idea to another:
detection requires to be less precise than
estimation, estimated value does not give any
iImmediate clue with regards to exploitation.

At N il —
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Leakage detection, cont.

. Leak detection was an open issue for Web
applications

« Numerous papers proposed different methods without
any statistical rigour

« Ml seemed to be the 'logical’ metric

« However only very recently some rigorous
statistical tests for M| were developed:

« Chatzikokolakis et al. (Statistical Measurement of
Information Leakage, TACAS 2010) and then

« Chothia & Guha (A Statistical Test for Information
Leaks Using Continuous MI, CSF 2011)

Mt e Ao st —
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Leakage detection, cont.

« S0 leakage detection is not just about computing
some MI values along a trace

. It's about determining which values do indicate a non-
zero Ml in the underlying distribution

» Need to appropriate statistical tools for our data

« Using sound statistical technigue also allows to
integrate prior distributions: very relevant for web
application data

o Discrete vs. continuous data
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Estimated mutual information

Leakage detection, cont.

« Web applications: leak via different packet-related
channels

« The main challenge is to actually detect ALL the leaks
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Leak detection results analysing the distribution of TCP ACK packets
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Leakage detection, cont.

« The idea of using theoretic distinguishing vectors
can be spun further to doing an a priori analysis of
leakage detection methods also in the case of
detection of power/EM leaks

« Recently we studied different leakage detection
methods that are used in evaluation of devices
against DPA

« DoM variant: as used by CRI
« Ml tests: as appropriated by us
o (there is virtually no research on leakage detection)

Mt e Ao st —
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Leakage detection, cont.

Samples required to achieve 80% power: Weighted sum
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Leakage detection, cont.

Samples required to achieve 80% power: Zero value
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Leakage detection, cont.

T
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Leakage detection, cont.

o Lot's of points show up with non-zero leakage
« Need a practical way of 'dealing with them'’
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Leakage detection vs. exploitation

« Ml values really don't need to match up with DPA
attack results ...

Correlation scores for guessed key 20 t-test test statistic for LSB 0 8Continuous mutual information, estimated I(K;T)  Discrete mutual information, estimated I(K;T)
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« Mather & Oswald: A Comparison of Statistical
Techniques for Detecting Side-Channel Information
Leakage in Cryptographic Devices, in submission
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Time to conclude

» 'Theory' comes in many forms. To improve SCA
research we need:
« Greater precision in formulating the problems we study

« Greater emphasis in the distinction between evaluating
statistical methods as compared to evaluating devices

« With increased precision and the use of theoretic
studies we can in fact

« Compare conclusively the performance of
distinguishers, leakage detection methods, basic

working of countermeasures, etc.

« Specify terms such as 'generic' and disprove the
mythical existence of such method e 3
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