Number "Not Used" Once - Practical fault attack on pqm4 implementations of NIST candidates

Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, Debdeep Mukhopadhyay

COSADE-2019
5th April 2019
Table of Contents

1 Context
2 Lattice based Crypto: Background
3 Fault Vulnerability
4 Key Recovery Attacks
5 Message Recovery Attacks
6 Experimental Validation
7 Countermeasures
8 Conclusion
Table of Contents

1. Context
2. Lattice based Crypto: Background
3. Fault Vulnerability
4. Key Recovery Attacks
5. Message Recovery Attacks
6. Experimental Validation
7. Countermeasures
8. Conclusion
Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from IonQ.

How many qubits do we need to break RSA-2048?

NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.

Started in December 2017, 3-5 years analysis period, followed by 2 years for draft standards.
Context

• Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
• The most powerful universal gate quantum computer: 160 physical qubits from IonQ.
• Bristlecone, Google’s quantum processor currently works with 72 physical qubits.
Context

• Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.

• The most powerful universal gate quantum computer: 160 physical qubits from IonQ.

• Bristlecone, Google’s quantum processor currently works with 72 physical qubits.

• How many qubits do we need to break RSA-2048??
Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qbits from IonQ.
- Bristlecone, Google’s quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? \(4096\) logical qubits
Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qubits from IonQ.
- Bristlecone, Google’s quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits ← Millions of physical qubits
Context

• Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.

• The most powerful universal gate quantum computer: 160 physical qubits from IonQ.

• Bristlecone, Google’s quantum processor currently works with 72 physical qubits.

• How many qubits do we need to break RSA-2048?? 4096 logical qubits ← Millions of physical qubits
Context

• Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
• The most powerful universal gate quantum computer: 160 physical qubits from IonQ.
• Bristlecone, Google’s quantum processor currently works with 72 physical qubits.
• How many qubits do we need to break RSA-2048?? 4096 logical qubits \(\leftarrow\) Millions of physical qubits
• NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.
Context

- Huge money in quantum computing is being invested by computer industry giants like Google, IBM, Intel and other companies like D-Wave, IonQ.
- The most powerful universal gate quantum computer: 160 physical qubits from IonQ.
- Bristlecone, Google’s quantum processor currently works with 72 physical qubits.
- How many qubits do we need to break RSA-2048?? 4096 logical qubits ← Millions of physical qubits
- NIST process for standardization of Post-Quantum Cryptography (PQC) is underway.
- Started in December 2017, 3-5 years analysis period, followed by 2 years for draft standards.
NIST PQC Call

- Signatures
- Encryption
- Key-establishments (KEMs)

Selection Criteria:
- Security
- Performance
- Backward compatibility
- Perfect forward secrecy
- ...
NIST PQC Call

- Signatures
- Encryption
- Key-establishments (KEMs)
- Selection Criteria:
 - Security
 - Performance
 - Backward compatibility
 - Perfect forward secrecy
 - Resistance to implementation attacks
 - ...
NIST PQC Call

<table>
<thead>
<tr>
<th>Type</th>
<th>Signatures</th>
<th>KEM/Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>5</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Code-based</td>
<td>3</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Multivariate</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Hash-based</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Isogeny-based</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>48</td>
<td>69</td>
</tr>
</tbody>
</table>
NIST PQC Call

<table>
<thead>
<tr>
<th>Type</th>
<th>Signatures</th>
<th>KEM/Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>3</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Code-based</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Multivariate</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Hash-based</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Isogeny-based</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>17</td>
<td>26</td>
</tr>
</tbody>
</table>
This Work

- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: Instruction Skips on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
This Work

- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: Instruction Skips on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
- Impact:
This Work

- Fault Attack on 4 Lattice-based schemes: *NewHope, Frodo, Kyber, Dilithium*
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
- Impact:
 - *Key Recovery Attack*
This Work

- Fault Attack on 4 Lattice-based schemes: NewHope, Frodo, Kyber, Dilithium
- Fault Vulnerability: Usage of nonces in the sampling operation.
- Fault Model: **Instruction Skips** on the ARM Cortex-M4.
- Number of faults: 1-5.
- Nonce-reuse attacks are not new... Well known in the context of ECC.
- Impact:
 - Key Recovery Attack
 - Message Recovery Attack in CCA-secure KEM schemes in Man In The Middle (MITM) setting
Table of Contents

1 Context

2 Lattice based Crypto: Background

3 Fault Vulnerability

4 Key Recovery Attacks

5 Message Recovery Attacks

6 Experimental Validation

7 Countermeasures

8 Conclusion
Learning With Errors (LWE) problem

Let $A \in \mathbb{Z}^{n \times n}_q$ and $S, E \in \mathbb{Z}^n_q \leftarrow D_{\sigma \cdot T}$. Then $T = (A \times S + E) \in \mathbb{Z}^{n \times n}_q$.

- **Search LWE**: Given several pairs (A, T), find S.
- **Decisional LWE**: Distinguish between valid LWE pairs (A, T) from uniformly random samples in $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$.

Computations over matrices and vectors were mapped to polynomials in the more efficient variants of LWE such as **Ring-LWE (RLWE)** and **Module-LWE (MLWE)**.

- **Ring LWE**: $\mathbb{R}_q^{\mathbb{Z}[X]/(X^n + 1)}$ with $A, S, E \in \mathbb{R}_q^{\mathbb{Z}[X]/(X^n + 1)}$.
- **Module LWE**: $\mathbb{R}_k^{\mathbb{Z}[X]/(X^n + 1)}^{\mathbb{Z}[X]/(X^n + 1)}$ with $A \in \mathbb{R}_k^{\mathbb{Z}[X]/(X^n + 1)}, S \in \mathbb{R}_l^{\mathbb{Z}[X]/(X^n + 1)}, E \in \mathbb{R}_k^{\mathbb{Z}[X]/(X^n + 1)}$.

- **Learning With Rounding (LWR)**: Error deterministically generated by rounding to a lower modulus.
Learning With Errors (LWE) problem

- Let $A \in \mathbb{Z}_q^{n \times n}$ and $S, E \in \mathbb{Z}_q^n \leftarrow D_\sigma$
Learning With Errors (LWE) problem

- Let \(A \in \mathbb{Z}^{n \times n}_q \) and \(S, E \in \mathbb{Z}^n_q \leftarrow D_\sigma \)
- \(T = (A \times S + E) \in \mathbb{Z}^n_q \)
Learning With Errors (LWE) problem

- Let $A \in \mathbb{Z}_q^{n \times n}$ and $S, E \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $T = (A \times S + E) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs (A, T), find S.

Computations over matrices and vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).

- Ring LWE: $R_q = \mathbb{Z}_q[X]/(X^n+1)$ with $A, S, E \in R_q$.
- Module LWE: $R_{k \times \ell_q} = (\mathbb{Z}_q[X]/(X^n+1))^{k \times \ell}$ with $A \in R_{k \times \ell_q}$, $S \in R_{\ell_q}$, $E \in R_{k_q}$.

Learning With Rounding (LWR): Error deterministically generated by rounding to a lower modulus.
Learning With Errors (LWE) problem

- Let $A \in \mathbb{Z}_q^{n \times n}$ and $S, E \in \mathbb{Z}_q^n \leftarrow D_{\sigma}$
- $T = (A \times S + E) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs (A, T), find S.
- Decisional LWE: Distinguish between valid LWE pairs (A, T) from uniformly random samples in $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$.
Learning With Errors (LWE) problem

- Let $A \in \mathbb{Z}^{n \times n}_q$ and $S, E \in \mathbb{Z}^n_q \leftarrow D_\sigma$
- $T = (A \times S + E) \in \mathbb{Z}^n_q$
- Search LWE: Given several pairs (A, T), find S.
- Decisional LWE: Distinguish between valid LWE pairs (A, T) from uniformly random samples in $(\mathbb{Z}^{n \times n}_q \times \mathbb{Z}^n_q)$.
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
Learning With Errors (LWE) problem

- Let \(A \in \mathbb{Z}_q^{n \times n} \) and \(S, E \in \mathbb{Z}_q^n \leftarrow D_\sigma \)
- \(T = (A \times S + E) \in \mathbb{Z}_q^n \)
- Search LWE: Given several pairs \((A, T)\), find \(S \).
- Decisional LWE: Distinguish between valid LWE pairs \((A, T)\) from uniformly random samples in \((\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)\).
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
- Ring LWE: \(R_q = \mathbb{Z}_q[X]/(X^n + 1) \) with \(A, S, E \in R_q \).
Learning With Errors (LWE) problem

- Let \(A \in \mathbb{Z}_q^{n \times n} \) and \(S, E \in \mathbb{Z}_q^n \leftarrow D_\sigma \)
- \(T = (A \times S + E) \in \mathbb{Z}_q^n \)
- Search LWE: Given several pairs \((A, T)\), find \(S \).
- Decisional LWE: Distinguish between valid LWE pairs \((A, T)\) from uniformly random samples in \((\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)\).
- Computations over matrices and Vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
- Ring LWE: \(\mathbb{R}_q = \mathbb{Z}_q[X]/(X^n + 1) \) with \(A, S, E \in \mathbb{R}_q \).
- Module LWE: \(\mathbb{R}_q^{k \times l} = (\mathbb{Z}_q[X]/(X^n + 1))^{k \times l} \) with \(A \in \mathbb{R}_q^{k \times l} \), \(S \in \mathbb{R}_q^l \), \(E \in \mathbb{R}_q^k \).
Learning With Errors (LWE) problem

- Let $\mathbf{A} \in \mathbb{Z}_q^{n \times n}$ and $\mathbf{S}, \mathbf{E} \in \mathbb{Z}_q^n \leftarrow D_\sigma$
- $\mathbf{T} = (\mathbf{A} \times \mathbf{S} + \mathbf{E}) \in \mathbb{Z}_q^n$
- Search LWE: Given several pairs (\mathbf{A}, \mathbf{T}), find \mathbf{S}.
- Decisional LWE: Distinguish between valid LWE pairs (\mathbf{A}, \mathbf{T}) from uniformly random samples in $(\mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n)$.
- Computations over matrices and vectors were mapped to polynomials in the more efficient variants of LWE such as Ring-LWE (RLWE) and Module-LWE (MLWE).
- Ring LWE: $\mathbb{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$ with $\mathbf{A}, \mathbf{S}, \mathbf{E} \in \mathbb{R}_q$.
- Module LWE: $\mathbb{R}_q^{k \times \ell} = (\mathbb{Z}_q[X]/(X^n + 1))^{k \times \ell}$ with $\mathbf{A} \in \mathbb{R}_q^{k \times \ell}$, $\mathbf{S} \in \mathbb{R}_q^\ell$, $\mathbf{E} \in \mathbb{R}_q^k$.
- Learning With Rounding (LWR): Error deterministically generated by rounding to a lower modulus.
The Importance of Error

- Error component E is essential to hardness guarantees
The Importance of Error

- Error component E is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations $T = A \ast S$
The Importance of Error

• Error component \(E \) is essential to hardness guarantees
• Without \(E \), LWE instance becomes solvable modular linear equations \(T = A \ast S \)
• An attack reducing (or bounding) \(E \) could potentially compromise the security of the scheme
The Importance of Error

• Error component E is essential to hardness guarantees
• Without E, LWE instance becomes solvable modular linear equations $T = A \ast S$
• An attack reducing (or bounding) E could potentially compromise the security of the scheme
• Several insecure instantiations of LWE:
The Importance of Error

- Error component E is essential to hardness guarantees.
- Without E, LWE instance becomes solvable modular linear equations $T = A \ast S$.
- An attack reducing (or bounding) E could potentially compromise the security of the scheme.
- Several insecure instantiations of LWE:
 - Distribution always outputs zero error.
The Importance of Error

- Error component E is essential to hardness guarantees.
- Without E, LWE instance becomes solvable modular linear equations $T = A \ast S$.
- An attack reducing (or bounding) E could potentially compromise the security of the scheme.
- Several insecure instantiations of LWE:
 - Distribution always outputs zero error.
 - Distribution always outputs an error in the interval $z + \left[-\frac{1}{2}, \frac{1}{2} \right)$.
 - Sum of a specific set of error co-ordinates is always zero.
 - Secret is same as the Error.
The Importance of Error

- Error component E is essential to hardness guarantees
- Without E, LWE instance becomes solvable modular linear equations $T = A \ast S$
- An attack reducing (or bounding) E could potentially compromise the security of the scheme
- Several insecure instantiations of LWE:
 - Distribution always outputs zero error
 - Distribution always outputs an error in the interval $z + \left[-\frac{1}{2}, \frac{1}{2} \right)$
 - Sum of a specific set of error co-ordinates is always zero
The Importance of Error

• Error component E is essential to hardness guarantees
• Without E, LWE instance becomes solvable modular linear equations $T = A \ast S$
• An attack reducing (or bounding) E could potentially compromise the security of the scheme
• Several insecure instantiations of LWE:
 • Distribution always outputs zero error
 • Distribution always outputs an error in the interval $z + \left[-\frac{1}{2}, \frac{1}{2} \right)$
 • Sum of a specific set of error co-ordinates is always zero
 • Secret is same as the Error
Table of Contents

1. Context
2. Lattice based Crypto: Background
3. Fault Vulnerability
4. Key Recovery Attacks
5. Message Recovery Attacks
6. Experimental Validation
7. Countermeasures
8. Conclusion
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
- $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
- $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
- $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
Fault Vulnerability

• Certain amount of randomness required to generate S and E.
• The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
• $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
• Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
• But, we observed...
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
 - $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
 - $S = \text{Sample}(\sigma, nonce_S)$, $E = \text{Sample}(\sigma, nonce_E)$
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
- $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
 - $S = \text{Sample}(\sigma, nonce_S)$, $E = \text{Sample}(\sigma, nonce_E)$
- In need for efficiency, the same seed appended with \textbf{one byte of nonce} is used across multiple instances of the Sample function.
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
- $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
 - $S = \text{Sample}(\sigma, nonce_S)$, $E = \text{Sample}(\sigma, nonce_E)$
- In need for efficiency, the same seed appended with one byte of nonce is used across multiple instances of the Sample function.
- If this nonce could be faulted to realize reuse, then same seed is used to sample both S and E resulting in $S = E$.
Fault Vulnerability

- Certain amount of randomness required to generate S and E.
- The secret S and error E are sampled from the same distribution and utilize the same functions for sampling.
- $S = \text{Sample}(\sigma_S)$, $E = \text{Sample}(\sigma_E)$
- Ideally, for every fresh instance of Sample, one should use a newly generated random seed.
- But, we observed...
 - $S = \text{Sample}(\sigma, \text{nonce}_S)$, $E = \text{Sample}(\sigma, \text{nonce}_E)$
- In need for efficiency, the same seed appended with one byte of nonce is used across multiple instances of the Sample function.
- If this nonce could be faulted to realize reuse, then same seed is used to sample both S and E resulting in $S = E$.
Fault Vulnerability

- Assume a Ring LWE instance

\[T = A \times S + E \in \mathbb{R}_q \]
Fault Vulnerability

- Assume a Ring LWE instance

\[T = A \times S + E \in R_q \]

- Inject fault such that \(E = S \).
Fault Vulnerability

- Assume a Ring LWE instance

\[T = A \times S + E \in \mathbb{R}_q \]

- Inject fault such that \(E = S \).
- Ring-LWE instance is faulted to:

\[T = A \times S + S \in \mathbb{R}_q \]
Fault Vulnerability

• Assume a Ring LWE instance

\[T = A \times S + E \in \mathbb{R}_q \]

• Inject fault such that \(E = S \).
• Ring-LWE instance is faulted to:

\[T = A \times S + S \in \mathbb{R}_q \]

• Modular linear system of equations with \(n \) equations and \(n \) unknowns which is trivially solvable.
Fault Vulnerability

- Assume a Ring LWE instance

\[T = A \times S + E \in \mathbb{R}_q \]

- Inject fault such that \(E = S \).

- Ring-LWE instance is faulted to:

\[T = A \times S + S \in \mathbb{R}_q \]

- Modular linear system of equations with \(n \) equations and \(n \) unknowns which is trivially solvable.

- Applies to all variants of LWE (General LWE, Ring-LWE, Module-LWE)
Fault Vulnerability

- These faulty LWE instances can be used to perform key recovery and message recovery attacks.
- Key recovery attacks are performed by faulting the key generation procedure.
- Key recovery attacks applicable to NewHope, Frodo, Kyber and Dilithium.
- Message recovery attacks are performed by faulting the encapsulation procedure.
- Message recovery attacks only applicable over NewHope, Frodo and Kyber KEM schemes.
Table of Contents

1. Context
2. Lattice based Crypto: Background
3. Fault Vulnerability
4. Key Recovery Attacks
5. Message Recovery Attacks
6. Experimental Validation
7. Countermeasures
8. Conclusion
NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
NewHope KEM

- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.

Sample operation:

- Sample takes input as a 32-byte seed and 1-byte of nonce
- It uses SHAKE256 (SHA-3 family) as an Extendable Output Function (XOF) to deterministically generate more random bits and subsequently generate S and E.

In NIST submission, designers use nonce=(0,1).
NewHope KEM

- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
NewHope KEM

- NewHope is a suite of KEM
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- S and E are generated using a Sample operation.
NewHope KEM

- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- S and E are generated using a Sample operation
- Sample takes input as a 32-byte seed and 1-byte of nonce
NewHope KEM

• NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
• Based on RLWE problem
• NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
• Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
• S and E are generated using a Sample operation
• Sample takes input as a 32-byte seed and 1-byte of nonce
• It uses SHAKE256 (SHA-3 family) as an Extendable Output Function (XOF) to deterministically generate more random bits and subsequently generate S and E.
NewHope KEM

- NewHope is a suite of KEM (NewHope-CPA/CCA-KEM)
- Based on RLWE problem
- NewHope-CPA KEM is derived from the NewHope-CPA Public Key Encryption (PKE) scheme.
- Further, NewHope-CCA KEM is obtained through application of FO transformation on NewHope-CPA KEM.
- S and E are generated using a Sample operation
- Sample takes input as a 32-byte seed and 1-byte of nonce
- It uses SHAKE256 (SHA-3 family) as an Extendable Output Function (XOF) to deterministically generate more random bits and subsequently generate S and E.
- In NIST submission, designers use nonce=$(0,1)$.
1: procedure NEWHOPE.CPAPKE.GEN()
2:
3: \(\hat{a} \leftarrow \text{GenA}(\text{publicseed}) \)
4: \(s \leftarrow \text{PolyBitRev}(\text{Sample}(\text{noiseseed}, 0)) \)
5: \(\hat{s} = \text{NTT}(s) \)
6: \(e \leftarrow \text{PolyBitRev}(\text{Sample}(\text{noiseseed}, 1)) \)
7: \(\hat{e} = \text{NTT}(e) \)
8: \(\hat{b} = \hat{a} \ast \hat{s} + \hat{e} \)
9: Return (\(pk = \text{EncodePK}(\hat{b}, \text{publicseed}), sk = \text{EncodePolynomial}(s) \))
10: end procedure
NEWHOPE CPA-PKE

1: procedure NEWHOPE.CPAPKE.GEN()

2:

3: \(\hat{a} \leftarrow \text{GenA}(\text{publicseed}) \)

4: \(s \leftarrow \text{PolyBitRev}(\text{Sample}(\text{noiseseed}, 0 \rightarrow R)) \)

5: \(\hat{s} = \text{NTT}(s) \)

6: \(e \leftarrow \text{PolyBitRev}(\text{Sample}(\text{noiseseed}, 1 \rightarrow R)) \)

7: \(\hat{e} = \text{NTT}(e) \)

8: \(\hat{b} = \hat{a} \ast \hat{s} + \hat{e} \)

9: Return \((pk = \text{EncodePK}(\hat{b}, \text{publicseed}), sk = \text{EncodePolynomial}(s)) \)

10: end procedure
NEWHOPE CPA-PKE

1: procedure NEWHOPE.CPAPKE.GEN()

2:

3: \(\hat{a} \leftarrow \text{GenA}(publicseed) \)

4: \(s \leftarrow \text{PolyBitRev}(\text{Sample}(noiseseed, 0\rightarrow R)) \)

5: \(\hat{s} = \text{NTT}(s) \)

6: \(e \leftarrow \text{PolyBitRev}(\text{Sample}(noiseseed, 1\rightarrow R)) \)

7: \(\hat{e} = \text{NTT}(e) \)

8: \(\hat{b} = \hat{a} \ast \hat{s} + \hat{e} \)

9: Return \((pk = \text{EncodePK}(\hat{b}, publicseed), sk = \text{EncodePolynomial}(s))\)

10: end procedure
Frodo KEM

- Frodo, similar to NewHope is a suite of KEM (NewHope-CPA/CCA-KEM) based on the General LWE problem.
- We identify the same vulnerable usage of nonce for sampling S and E.
Frodo CPA-PKE

1: \textbf{procedure} FRODO.CPAPKE.GEN() \\
2: \hspace{1em} seed_A \leftarrow U(\{0, 1\}^{\text{len}_A}) \\
3: \hspace{1em} A \leftarrow \text{Frodo.Gen}(\text{seed}_A) \in \mathbb{Z}_{q}^{n \times n} \\
4: \hspace{1em} seed_E \leftarrow U(\{0, 1\}^{\text{len}_E}) \\
5: \hspace{1em} S \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 1) \in \mathbb{Z}_{q}^{n \times \bar{n}} \\
6: \hspace{1em} E \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 2) \in \mathbb{Z}_{q}^{n \times \bar{n}} \\
7: \hspace{1em} B = A \times S + E \\
8: \hspace{1em} \text{Public key } pk \leftarrow (\text{seed}_A, B) \text{ and Secret key } sk \leftarrow S \\
9: \textbf{end procedure}
Frodo CPA-PKE

1: procedure FRODO.CPAPKE.GEN()
2: \(seed_A \leftarrow U(\{0, 1\}^{\text{len}_A})\)
3: \(A \leftarrow \text{Frodo.Gen}(seed_A) \in \mathbb{Z}_{q}^{n \times n}\)
4: \(seed_E \leftarrow U(\{0, 1\}^{\text{len}_E})\)
5: \(S \leftarrow \text{Frodo.SampleMatrix}(seed_E, 1 \rightarrow R) \in \mathbb{Z}_{q}^{n \times \bar{n}}\)
6: \(E \leftarrow \text{Frodo.SampleMatrix}(seed_E, 2 \rightarrow R) \in \mathbb{Z}_{q}^{n \times \bar{n}}\)
7: \(B = A \times S + E\)
8: Public key \(pk \leftarrow (seed_A, B)\) and Secret key \(sk \leftarrow S\)
9: end procedure
Frodo CPA-PKE

1: function FRODO.CPAPKE.GEN()
2: \(\text{seed}_A \leftarrow U(\{0, 1\}^{\text{len}_A}) \)
3: \(A \leftarrow \text{Frodo.Gen}(\text{seed}_A) \in \mathbb{Z}_q^{n \times n} \)
4: \(\text{seed}_E \leftarrow U(\{0, 1\}^{\text{len}_E}) \)
5: \(S \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 1 \rightarrow R) \in \mathbb{Z}_q^{n \times \bar{n}} \)
6: \(E \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 2 \rightarrow R) \in \mathbb{Z}_q^{n \times \bar{n}} \)
7: \(B = A \times S + E \)
8: Public key \(pk \leftarrow (\text{seed}_A, B) \) and Secret key \(sk \leftarrow S \)
9: end function
Kyber KEM

- Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based on the MLWE problem.
- $S \in \mathbb{R}_q^k$ and $E \in \mathbb{R}_q^\ell$ are sampled from a Centered Binomial distribution.
- Same seeds appended with fixed nonces are yet again used in sampling S and E.
Kyber KEM

• Kyber is a suite of KEM (NewHope-CPA/CCA-KEM) based on the MLWE problem
• \(S \in \mathbb{R}_q^k \) and \(E \in \mathbb{R}_q^\ell \) are sampled from a Centered Binomial distribution.
• Same seeds appended with fixed nonces are yet again used in sampling \(S \) and \(E \).
• In NIST submission, designers use nonce=(0 to k-1) for \(S \) and nonce=(k to 2k-1) for \(E \).
Kyber CPA-PKE

1: procedure KYBER.CPAPKE.GEN()
2: \[d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0 \]
3: For \(i \) from 0 to \(k - 1 \)
4: For \(j \) from 0 to \(k - 1 \)
5: \[a[i][j] \leftarrow \text{Parse}(\text{XOF}(\rho||j||i)) \]
6: EndFor
7: EndFor
8: For \(i \) from 0 to \(k - 1 \)
9: \[s[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N)) \]
10: \[N := N + 1 \]
11: EndFor
12: For \(i \) from 0 to \(k - 1 \)
13: \[e[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N)) \]
14: \[N := N + 1 \]
15: EndFor
16: \[\hat{s} \leftarrow \text{NTT}(s) \]
17: \[t = \text{NTT}^{-1}(\hat{a} \ast \hat{s}) + e \]
18: \[pk := (\text{Encode}_{d_t}(\text{Compress}_q(t, d_t))||\rho) \]
19: \[\text{Secret Key} := \text{Encode}_{13}(\hat{s} \mod^+ q) \]
20: Return (Public Key, Secret Key)
21: end procedure
Kyber CPA-PKE

1: procedure KYBER.CPAPKE.GEN()
2: \[d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0 \]
3: For \(i \) from 0 to \(k - 1 \)
4: For \(j \) from 0 to \(k - 1 \)
5: \[a[i][j] \leftarrow \text{Parse}(XOF(\rho||j||i)) \]
6: EndFor
7: EndFor
8: For \(i \) from 0 to \(k - 1 \)
9: \[s[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N \rightarrow R)) \]
10: \(N := N + 1 \)
11: EndFor
12: For \(i \) from 0 to \(k - 1 \)
13: \[e[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N \rightarrow R)) \]
14: \(N := N + 1 \)
15: EndFor
16: \(\hat{s} \leftarrow \text{NTT}(s) \)
17: \[t = \text{NTT}^{-1}(\hat{a} \ast \hat{s}) + e \]
18: \(pk := (\text{Encode}_{d_t}(\text{Compress}_q(t, d_t))||\rho) \)
19: Secret Key := Encode_{13}(\hat{s} mod^+ q)
20: Return (Public Key, Secret Key)
21: end procedure
Kyber CPA-PKE

1: procedure KYBER.CPAPKE.GEN()
2: \(d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0 \)
3: For \(i \) from 0 to \(k - 1 \)
4: For \(j \) from 0 to \(k - 1 \)
5: \(a[i][j] \leftarrow \text{Parse}(XOF(\rho||j||i)) \)
6: EndFor
7: EndFor
8: For \(i \) from 0 to \(k - 1 \)
9: \(s[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N \rightarrow R)) \)
10: \(N := N + 1 \)
11: EndFor
12: For \(i \) from 0 to \(k - 1 \)
13: \(e[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N \rightarrow R)) \)
14: \(N := N + 1 \)
15: EndFor
16: \(\hat{s} \leftarrow \text{NTT}(s) \)
17: \(t = \text{NTT}^{-1}(\hat{a} * \hat{s}) + e \)
18: \(pk := \text{Encode}_{dt}(\text{Compress}_q(t, dt)||\rho) \)
19: Secret Key := \text{Encode}_{13}(\hat{s} mod^+ q) \)
20: Return (Public Key, Secret Key)
21: end procedure
Kyber CPA-PKE

1: `procedure KYBER.CPAPKE.GEN()`
2: \(d \leftarrow \{0, 1\}^{256}, (\rho, \sigma) := G(d), N := 0\)
3: For \(i\) from 0 to \(k - 1\)
4: For \(j\) from 0 to \(k - 1\)
5: \(a[i][j] \leftarrow \text{Parse}(XOF(\rho||j||i))\)
6: EndFor
7: EndFor
8: For \(i\) from 0 to \(k - 1\)
9: \(s[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N \rightarrow R))\)
10: \(N := N + 1\)
11: EndFor
12: For \(i\) from 0 to \(k - 1\)
13: \(e[i] \leftarrow \text{CBD}_\eta(\text{PRF}(\sigma, N \rightarrow R))\)
14: \(N := N + 1\)
15: EndFor
16: \(\hat{s} \leftarrow \text{NTT}(s)\)
17: \(t = \text{NTT}^{-1}(\hat{a} \ast \hat{s}) + e\)
18: Public Key := (Encode_{d_t}(\text{Compress}_q(t, d_t))||\rho) **** Adds more error
19: Secret Key := Encode_{13}(\hat{s} \mod + q)
20: Return (Public Key, Secret Key)
21: `end procedure`
Key Recovery Attack on Kyber

• The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.

• Though the induced fault nullified the error in the LWE instance, the LWR hardness might still not be possible to break.
Key Recovery Attack on Kyber

- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might still not be possible to break.
- The authors have only considered rounding for efficiency and not for security.
Key Recovery Attack on Kyber

- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might still not be possible to break.
- The authors have only considered rounding for efficiency and not for security.
- The authors state that “we believe that the compression technique adds some security”, but it has not been quantified.
Key Recovery Attack on Kyber

- The Compress function rounds each coefficient to a lower modulus thereby inherently introducing additional deterministic error.
- Though the induced fault nullified the error in the LWE instance, the LWR hardness might still not be possible to break.
- The authors have only considered rounding for efficiency and not for security.
- The authors state that “we believe that the compression technique adds some security”, but it has not been quantified.
- Thus, our fault does not result in direct key recovery attack, but brings down the hardness to solving the corresponding LWR problem.
Dilithium Signature Scheme

- Dilithium is a Fiat-Shamir Abort-based lattice signature scheme.
- Indistinguishability of the Public key is based on the MLWE problem.
- Here again, nonces appended with domain separators are used to sample $S \in R_q^\ell$ and $E \in R_q^k$.
Dilithium Signature Scheme

1: `procedure DILITHIUM.KEYGEN()`
2: \(\rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0 \)
3: For \(i \) from 0 to \(\ell - 1 \)
4: \(s_1[i] := \text{Sample}(PRF(\rho', N)) \)
5: \(N := N + 1 \)
6: EndFor
7: For \(i \) from 0 to \(k - 1 \)
8: \(s_2[i] := \text{Sample}(PRF(\rho', N)) \)
9: \(N := N + 1 \)
10: EndFor
11: \(A \sim R_q^{k \times \ell} := \text{ExpandA}(\rho) \)
12: Compute \(t = A \times s_1 + s_2 \)
13: Compute \(t_1 := \text{Power2Round}_q(t, d) \)
14: \(tr \in \{0, 1\}^{384} := \text{CRH}(\rho || t_1) \)
15: Return \(pk = (\rho, t_1), sk = (\rho, K, tr, s_1, s_2, t_0) \)
16: `end procedure`
Dilithium Signature Scheme

1: procedure DILITHIUM.KEYGEN()
2: \(\rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0\)
3: For \(i\) from 0 to \(\ell - 1\)
4: \(s_1[i] := \text{Sample}(\text{PRF}(\rho', N \rightarrow R))\)
5: \(N := N + 1\)
6: EndFor
7: For \(i\) from 0 to \(k - 1\)
8: \(s_2[i] := \text{Sample}(\text{PRF}(\rho', N \rightarrow R))\)
9: \(N := N + 1\)
10: EndFor
11: \(A \sim R_q^{k \times \ell} := \text{ExpandA}(\rho)\)
12: Compute \(t = A \times s_1 + s_2\)
13: Compute \(t_1 := \text{Power2Round}_q(t, d)\)
14: \(tr \in \{0, 1\}^{384} := \text{CRH}(\rho||t_1)\)
15: Return \(pk = (\rho, t_1), sk = (\rho, K, tr, s_1, s_2, t_0)\)
16: end procedure
Dilithium Signature Scheme

1: procedure DILITHIUM.KEYGEN()
2: \(\rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0 \)
3: For \(i \) from 0 to \(\ell - 1 \)
4: \(s_1[i] := \text{Sample}(PRF(\rho', N \rightarrow R)) \)
5: \(N := N + 1 \)
6: EndFor
7: For \(i \) from 0 to \(k - 1 \)
8: \(s_2[i] := \text{Sample}(PRF(\rho', N \rightarrow R)) \)
9: \(N := N + 1 \)
10: EndFor
11: \(A \sim R_q^{k \times \ell} := \text{ExpandA}(\rho) \)
12: Compute \(t = A \times s_1 + s_2 \)
13: Compute \(t_1 := \text{Power2Round}_q(t, d) \)
14: \(tr \in \{0, 1\}^{384} := \text{CRH}(\rho||t_1) \)
15: Return \(pk = (\rho, t_1), sk = (\rho, K, tr, s_1, s_2, t_0) \)
16: end procedure
Dilithium Signature Scheme

1: procedure DILITHIUM.KEYGEN()
2: \(\rho, \rho' \leftarrow \{0, 1\}^{256}, K \leftarrow \{0, 1\}^{256}, N := 0 \)
3: For \(i \) from 0 to \(\ell - 1 \)
4: \(s_1[i] := Sample(PR\{\rho', N \rightarrow R\}) \)
5: \(N := N + 1 \)
6: EndFor
7: For \(i \) from 0 to \(k - 1 \)
8: \(s_2[i] := Sample(PR\{\rho', N \rightarrow R\}) \)
9: \(N := N + 1 \)
10: EndFor
11: \(A \sim R_q^{k \times \ell} := \text{ExpandA}(\rho) \)
12: Compute \(t = A \times s_1 + s_2 \)
13: Compute \(t_1 := \text{Power2Round}_q(t, d) \) **** Only the top \(d \) bits of \(t \)
14: \(tr \in \{0, 1\}^{384} := \text{CRH}(\rho || t_1) \)
15: Return \(pk = (\rho, t_1), sk = (\rho, K, tr, s_1, s_2, t_0) \)
16: end procedure
Key Recovery Attack on Dilithium

- Only the higher order bits of the LWE instance t are declared as the public key.
Key Recovery Attack on Dilithium

- Only the higher order bits of the LWE instance t are declared as the public key.
- Some rounding error is introduced on top of the LWE instance t.
Key Recovery Attack on Dilithium

• Only the higher order bits of the LWE instance t are declared as the public key.

• Some rounding error is introduced on top of the LWE instance t.

• Security Analysis of Dilithium assumes that the whole of t is known to the adversary. The original LWE instance t can be derived just through observation of a large number of signatures.
Key Recovery Attack on Dilithium

- Only the higher order bits of the LWE instance t are declared as the public key.
- Some rounding error is introduced on top of the LWE instance t.
- Security Analysis of Dilithium assumes that the whole of t is known to the adversary. The original LWE instance t can be derived just through observation of a large number of signatures.
- If the whole of t can be derived by the adversary, our induced faults results in a key recovery attack.
Table of Contents

1. Context
2. Lattice based Crypto: Background
3. Fault Vulnerability
4. Key Recovery Attacks
5. Message Recovery Attacks
6. Experimental Validation
7. Countermeasures
8. Conclusion
NEWHOPE CPA-PKE

1: procedure
 NEWHOPE.CPAPKE.ENC(pk \in \{0, \ldots, 255\}^{7.n/4+32}, \mu \in \{0, \ldots, 255\}^{32}, coin \in \{0, \ldots, 255\}^{32})
2: :
3: \hat{s} \leftarrow PolyBitRev(Sample(coin, 0))
4: \hat{e} \leftarrow PolyBitRev(Sample(coin, 1))
5: \hat{e} \leftarrow Sample(coin, 2)
6: \hat{t} = NTT(\hat{s})
7: \hat{u} = \hat{a} \ast \hat{t} + NTT(\hat{e})
8: v = Encode(\mu)
9: \hat{v} = NTT^{-1}(\hat{b} \ast \hat{t}) + \hat{e} + v
10: h = Compress(\hat{v})
11: Return c = EncodeC(\hat{u}, h)
12: end procedure
NEWHOPE CPA-PKE

1: \textbf{procedure} \\
NEWHOPE.CPAPKE.ENC\left(pk \in \{0, \ldots, 255\}^{7.n/4+32}, \mu \in \{0, \ldots, 255\}^{32}, coin \in \{0, \ldots, 255\}^{32}\right) \\
2: \colon \\
3: \hat{s} \leftarrow \text{PolyBitRev}\left(\text{Sample}(\text{coin}, 0 \rightarrow R)\right) \\
4: \hat{e} \leftarrow \text{PolyBitRev}\left(\text{Sample}(\text{coin}, 1 \rightarrow R)\right) \\
5: \hat{\epsilon} \leftarrow \text{Sample}(\text{coin}, 2) \\
6: \hat{t} = \text{NTT}(\hat{s}) \\
7: \hat{u} = \hat{a} \ast \hat{t} + \text{NTT}(\hat{e}) \\
8: \hat{v} = \text{Encode}(\mu) \\
9: \hat{v} = \text{NTT}^{-1}(\hat{b} \ast \hat{t}) + \hat{\epsilon} + \hat{v} \\
10: h = \text{Compress}(\hat{v}) \\
11: \text{Return } c = \text{EncodeC}(\hat{u}, h) \\
12: \textbf{end procedure}
NEWHOPE CPA-PKE

1: procedure
 NEWHOPE.CPAPKE.ENC\((pk \in \{0, \ldots, 255\}^{7.n/4+32}, \mu \in \{0, \ldots, 255\}^{32}, coin \in \{0, \ldots, 255\}^{32}\))

2: :

3: \(s \leftarrow \text{PolyBitRev}(\text{Sample}(coin, 0 \rightarrow R))\)
4: \(e \leftarrow \text{PolyBitRev}(\text{Sample}(coin, 1 \rightarrow R))\)
5: \(e \leftarrow \text{Sample}(coin, 2)\)
6: \(t = \text{NTT}(s)\)
7: \(\hat{u} = \hat{a} \ast \hat{t} + \text{NTT}(e)\)
8: \(v = \text{Encode}(\mu)\)
9: \(\hat{v} = \text{NTT}^{-1}(\hat{b} \ast \hat{t}) + \hat{e} + v\)
10: \(h = \text{Compress}(\hat{v})\)
11: Return \(c = \text{EncodeC}(\hat{u}, h)\)
12: end procedure
NEWHOPE CPA-PKE

1: procedure
NEWHOPE.CPAPKE.ENC\((pk \in \{0, \ldots, 255\}^{7.n/4+32}, \mu \in \{0, \ldots, 255\}^{32}, coin \in \{0, \ldots, 255\}^{32}\))

2: :
3: \(s \leftarrow \text{PolyBitRev}(\text{Sample}(coin, 0 \rightarrow R))\)
4: \(e \leftarrow \text{PolyBitRev}(\text{Sample}(coin, 1 \rightarrow R))\)
5: \(\hat{e} \leftarrow \text{Sample}(coin, 2)\)
6: \(\hat{t} = \text{NTT}(s)\)
7: \(\hat{u} = \hat{a} \ast \hat{t} + \text{NTT}(\hat{e})\)
8: \(v = \text{Encode}(\mu)\)
9: \(\hat{v} = \text{NTT}^{-1}(\hat{b} \ast \hat{t}) + \hat{e} + v\)
10: \(h = \text{Compress}(\hat{v})\)
11: Return \(c = \text{EncodeC}(\hat{u}, h)\)
12: end procedure
NEWHOPE CPA-PKE

1: procedure
 NEWHOPE.CPAPKE.ENC(pk ∈ {0, ..., 255}^{7.n/4+32}, μ ∈ {0, ..., 255}^{32}, coin ∈ {0, ..., 255}^{32})
2: :
3: s ← PolyBitRev(Sample(coin, 0 → R))
4: e ← PolyBitRev(Sample(coin, 1 → R))
5: e ← Sample(coin, 2)
6: t = NTT(s)
7: ü = â * ť + NTT(é)
8: v = Encode(μ)
9: ṽ = NTT^{-1}(b̂ * ť) + é + v
10: h = Compress(ṽ)
11: Return c = EncodeC(û, h)
12: end procedure
NEWHOPE CPA-PKE

1: procedure
 NEWHOPE.CPAPKE.ENC(pk ∈ \{0, \ldots, 255\}^{7.n/4+32}, \mu ∈ \{0, \ldots, 255\}^{32}, coin ∈ \{0, \ldots, 255\}^{32})
2: :
3: s ← PolyBitRev(Sample(coin, 0 → R))
4: e ← PolyBitRev(Sample(coin, 1 → R))
5: é ← Sample(coin, 2)
6: t = NTT(\hat{s})
7: \hat{u} = \hat{a} \ast \hat{t} + NTT(\hat{e})
8: v = Encode(\mu)
9: \hat{v} = NTT^{-1}(\hat{b} \ast \hat{t}) + \hat{e} + v
10: h = Compress(\hat{v})
11: Return c = EncodeC(\hat{u}, h)
12: end procedure
NEWHOPE CPA-PKE

1: procedure
NEWHOPE.CPAPKE.ENC\((pk \in \{0, \ldots, 255\}^{7.n/4+32}, \mu \in \{0, \ldots, 255\}^{32}, coin \in \{0, \ldots, 255\}^{32}) \)

2:

3: \(\hat{s} \leftarrow \text{PolyBitRev}(\text{Sample}(\text{coin}, 0 \rightarrow R)) \)

4: \(\hat{e} \leftarrow \text{PolyBitRev}(\text{Sample}(\text{coin}, 1 \rightarrow R)) \)

5: \(\hat{e} \leftarrow \text{Sample}(\text{coin}, 2) \)

6: \(\hat{t} = \text{NTT}(\hat{s}) \)

7: \(\hat{u} = \hat{a} \ast \hat{t} + \text{NTT}(\hat{e}) \)

8: \(\nu = \text{Encode}(\mu) \)

9: \(\hat{v} = \text{NTT}^{-1}(\hat{b} \ast \hat{t}) + \hat{e} + \nu \)

10: \(\hat{h} = \text{Compress}(\hat{v}) \)

11: Return \(c = \text{EncodeC}(\hat{u}, \hat{h}) \)

12: end procedure
NEWHOPE CPA-PKE

1: procedure
 NEWHOPE.CPAPKE.ENC(pk ∈ \{0, \ldots, 255\}^{7 \cdot n/4 + 32}, \mu \in \{0, \ldots, 255\}^{32}, coin \in \{0, \ldots, 255\}^{32})

2: :

3: \hat{s} \leftarrow \text{PolyBitRev}(\text{Sample}(\text{coin}, 0 \rightarrow R))

4: \hat{e} \leftarrow \text{PolyBitRev}(\text{Sample}(\text{coin}, 1 \rightarrow R))

5: \hat{e} \leftarrow \text{Sample}(\text{coin}, 2)

6: \hat{t} = \text{NTT}(\hat{s})

7: \hat{u} = \hat{a} \ast \hat{t} + \text{NTT}(\hat{e})

8: \hat{v} = \text{Encode}(\mu)

9: \hat{v} = \text{NTT}^{-1}(\hat{b} \ast \hat{t}) + \hat{e} + \hat{v}

10: h = \text{Compress}(\hat{v})

11: Return c = \text{EncodeC}(\hat{u}, h)

12: end procedure
FRODO CPA-PKE

1: **procedure** FRODO.CPAPKE.ENC()
2: \(\text{seed}_E \leftarrow U(\{0, 1\}^{\text{len}_E}) \)
3: \(\hat{S} \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 4) \in \mathbb{Z}_q^{\tilde{m} \times n} \)
4: \(\hat{E} \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 5) \in \mathbb{Z}_q^{\tilde{m} \times n} \)
5: \(\hat{E} \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 6) \in \mathbb{Z}_q^{n \times \tilde{n}} \)
6: Compute \(\hat{B} = \hat{S} \times A + \hat{E} \)
7: Compute \(V = \hat{S} \times B + \hat{E} + \text{Frodo.Encode}(\mu) \)
8: Ciphertext \(C \leftarrow (C_1, C_2) = (\hat{B}, V) \)
9: **end procedure**
FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC()
2: \(seed_E \leftarrow U(\{0, 1\}^{\text{len}_E}) \)
3: \(\hat{S} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 4 \rightarrow R) \in \mathbb{Z}_q^{m \times n} \)
4: \(\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 5 \rightarrow R) \in \mathbb{Z}_q^{m \times n} \)
5: \(\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 6) \in \mathbb{Z}_q^{n \times \bar{n}} \)
6: Compute \(\hat{B} = \hat{S} \times A + \hat{E} \)
7: Compute \(V = \hat{S} \times B + \hat{E} + \text{Frodo.Encode}(\mu) \)
8: Ciphertext \(C \leftarrow (C_1, C_2) = (\hat{B}, V) \)
9: end procedure
FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC()
2: \text{seed}_E \leftarrow U(\{0, 1\}^{\text{len}_E})
3: \hat{S} \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 4 \rightarrow R) \in \mathbb{Z}_q^{\bar{m} \times n}
4: \hat{E} \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 5 \rightarrow R) \in \mathbb{Z}_q^{\bar{m} \times n}
5: \hat{E} \leftarrow \text{Frodo.SampleMatrix}(\text{seed}_E, 6) \in \mathbb{Z}_q^{n \times \bar{n}}
6: \text{Compute } \hat{B} = \hat{S} \times A + \hat{E}
7: \text{Compute } V = \hat{S} \times B + \hat{E} + \text{Frodo.Encode}(\mu)
8: \text{Ciphertext } C \leftarrow (C_1, C_2) = (\hat{B}, V)
9: end procedure
FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC()
2: \[seed_E \leftarrow U(\{0, 1\}^{len_E})\]
3: \[\hat{S} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 4 \rightarrow R) \in \mathbb{Z}_q^{m \times n}\]
4: \[\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 5 \rightarrow R) \in \mathbb{Z}_q^{m \times n}\]
5: \[\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 6) \in \mathbb{Z}_q^{n \times \bar{n}}\]
6: Compute \[\hat{B} = \hat{S} \times A + \hat{E}\]
7: Compute \[V = \hat{S} \times B + \hat{E} + \text{Frodo.Encode}(\mu)\]
8: Ciphertext \[C \leftarrow (C_1, C_2) = (\hat{B}, V)\]
9: end procedure
FRODO CPA-PKE

1: procedure FRODO.CPAPKE.ENC()
2: \[seed_E \leftarrow U(\{0, 1\}^{\text{len}_E}) \]
3: \[S \leftarrow \text{Frodo.SampleMatrix}(seed_E, 4 \rightarrow R) \in \mathbb{Z}_{q}^{m \times n} \]
4: \[E \leftarrow \text{Frodo.SampleMatrix}(seed_E, 5 \rightarrow R) \in \mathbb{Z}_{q}^{m \times n} \]
5: \[\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 6) \in \mathbb{Z}_{q}^{n \times \bar{n}} \]
6: Compute \[\hat{B} = S \times A + \hat{E} \]
7: Compute \[V = S \times B + \hat{E} + \text{Frodo.Encode}(\mu) \]
8: Ciphertext \[C \leftarrow (C_1, C_2) = (\hat{B}, V) \]
9: end procedure
FRODO CPA-PKE

1: **procedure** FRODO.CPAPKE.ENC()
2: \[seed_E \leftarrow U(\{0, 1\}^{\text{len}_E}) \]
3: \[\hat{S} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 4 \rightarrow R) \in \mathbb{Z}_q^{m \times n} \]
4: \[\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 5 \rightarrow R) \in \mathbb{Z}_q^{m \times n} \]
5: \[\hat{E} \leftarrow \text{Frodo.SampleMatrix}(seed_E, 6) \in \mathbb{Z}_q^{n \times \bar{n}} \]
6: Compute \[\hat{B} = \hat{S} \times A + \hat{E} \]
7: Compute \[V = \hat{S} \times B + \hat{E} + \text{Frodo.Encode}(\mu) \]
8: Ciphertext \[C \leftarrow (C_1, C_2) = (\hat{B}, V) \]
9: **end procedure**
KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC\((pk \in \mathcal{B}^{dt \cdot k \cdot n/8 + 32}, m \in \mathcal{B}^{32}, r \in \mathcal{B}^{32}) \)
2: \(N = 0 \)
3: For \(i \) from 0 to \(k - 1 \)
4: \(r[i] \leftarrow \text{CBD}_\eta(\text{PRF}(r, N)) \)
5: \(N := N + 1 \)
6: EndFor
7: For \(i \) from 0 to \(k - 1 \)
8: \(e_1 \leftarrow \text{CBD}_\eta(\text{PRF}(r, N)) \)
9: \(N := N + 1 \)
10: EndFor
11: For \(i \) from 0 to \(k - 1 \) \(e_2 \leftarrow \text{CBD}_\eta(\text{PRF}(r, N)) \)
12: EndFor
13: \(\hat{r} = \text{NTT}(r) \)
14: \(u = \text{NTT}^{-1}(\hat{a}^T \ast \hat{r}) + e_1 \)
15: \(v = \text{NTT}^{-1}(\hat{t}^T \ast \hat{r}) + e_2 + \text{Decode}_1(\text{Decompose}_q(m, 1)) \)
16: \(c_1 = \text{Encode}_{d_u}(\text{Compress}_q(u, d_u)) \)
17: \(c_2 = \text{Encode}_{d_v}(\text{Compress}_q(v, d_v)) \)
18: \(c = (c_1, c_2) \)
19: end procedure
KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC(pk ∈ \mathcal{B}_{d \cdot k \cdot n/8 + 32}, m ∈ \mathcal{B}^{32}, r ∈ \mathcal{B}^{32})
2: N = 0
3: For i from 0 to k − 1
4: r[i] ← CBD_{\eta}(PRF(r, N → R))
5: N := N + 1
6: EndFor
7: For i from 0 to k − 1
8: e_{1} ← CBD_{\eta}(PRF(r, N → R))
9: N := N + 1
10: EndFor
11: For i from 0 to k − 1 e_{2} ← CBD_{\eta}(PRF(r, N))
12: EndFor
13: \hat{r} = NTT(r)
14: u = NTT^{-1}(\hat{a}^T \ast \hat{r}) + e_{1}
15: v = NTT^{-1}(\hat{t}^T \ast \hat{r}) + e_{2} + \text{Decode}_1(\text{Decompose}_q(m, 1))
16: c_1 = \text{Encode}_{d_u}(\text{Compress}_q(u, d_u))
17: c_2 = \text{Encode}_{d_v}(\text{Compress}_q(v, d_v))
18: c = (c_1, c_2)
19: end procedure
KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC(pk ∈ \mathcal{B}^{d_t \cdot k \cdot n/8+32}, m ∈ \mathcal{B}^{32}, r ∈ \mathcal{B}^{32})
2: \quad N = 0
3: \quad For i from 0 to k − 1
4: \quad r[i] ← CBD_\eta(\text{PRF}(r, N \rightarrow R))
5: \quad N := N + 1
6: \quad EndFor
7: \quad For i from 0 to k − 1
8: \quad e_1 ← CBD_\eta(\text{PRF}(r, N \rightarrow R))
9: \quad N := N + 1
10: \quad EndFor
11: \quad For i from 0 to k − 1 e_2 ← CBD_\eta(\text{PRF}(r, N))
12: \quad EndFor
13: \quad \hat{r} = \text{NTT}(r)
14: \quad u = \text{NTT}^{-1}(\hat{a}^T \ast \hat{r}) + e_1
15: \quad v = \text{NTT}^{-1}(\hat{t}^T \ast \hat{r}) + e_2 + \text{Decode}_1(\text{Decompose}_q(m, 1))
16: \quad c_1 = \text{Encode}_{d_u}(\text{Compress}_q(u, d_u))
17: \quad c_2 = \text{Encode}_{d_v}(\text{Compress}_q(v, d_v))
18: \quad c = (c_1, c_2)
19: end procedure
KYBER CPA-PKE

1: procedure KYBER.CPAPKE.ENC:pk ∈ B^{d_k \cdot k \cdot n/8 + 32}, m ∈ B^{32}, r ∈ B^{32})
2: N = 0
3: For i from 0 to k − 1
4: r[i] ← CBD_{\eta}(PRF(r, N → R))
5: N := N + 1
6: EndFor
7: For i from 0 to k − 1
8: e_1 ← CBD_{\eta}(PRF(r, N → R))
9: N := N + 1
10: EndFor
11: For i from 0 to k − 1 e_2 ← CBD_{\eta}(PRF(r, N))
12: EndFor
13: \hat{r} = NTT(r)
14: u = NTT^{-1}(\hat{\alpha}^T * \hat{r}) + e_1
15: v = NTT^{-1}(\hat{\tau}^T * \hat{r}) + e_2 + \text{Decode}_1(\text{Decompose}_q(m, 1))
16: c_1 = \text{Encode}_{d_u}(\text{Compress}_q(u, d_u)) **** Adds more error
17: c_2 = \text{Encode}_{d_v}(\text{Compress}_q(v, d_v))
18: c = (c_1, c_2)
19: end procedure
Translating Message Recovery Attack to CCA-KEM schemes

• CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.

• A **re-encapsulation** is performed in the decapsulation procedure to check for the validity of ciphertexts.

How do we bypass this?

We observe that a fault attacker in a Man-In-The-Middle (MITM) setting can still mount the attack without being detected during decapsulation.
Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A re-encapsulation is performed in the decapsulation procedure to check for the validity of ciphertexts.
- Thus, faults injected into the encapsulation procedure are detected during decapsulation.

How do we bypass this?

We observe that a fault attacker in a Man-In-The-Middle (MITM) setting can still mount the attack without being detected during decapsulation.
Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A re-encapsulation is performed in the decapsulation procedure to check for the validity of ciphertexts.
- Thus, faults injected into the encapsulation procedure are detected during decapsulation.
- How do we bypass this?
Translating Message Recovery Attack to CCA-KEM schemes

- CPA-secure PKE is transformed to CCA-secure KEM using the Quantum-Fujisaki Okamoto transformation.
- A re-encapsulation is performed in the decapsulation procedure to check for the validity of ciphertexts.
- Thus, faults injected into the encapsulation procedure are detected during decapsulation.
- How do we bypass this?
- We observe that a fault attacker in a Man-In-The-Middle (MITM) setting can still mount the attack without being detected during decapsulation.
Message Recovery Attack over CCA-KEM schemes

Figure: Fault assisted MITM attack on CCA Secure KEM scheme
Table of Contents

1. Context
2. Lattice based Crypto: Background
3. Fault Vulnerability
4. Key Recovery Attacks
5. Message Recovery Attacks
6. Experimental Validation
7. Countermeasures
8. Conclusion
We target reference implementations from the \textit{pqm4} benchmarking framework for PQC candidates on the ARM Cortex-M4 microcontroller.

Implementations were ported to the STM32F4DISCOVERY board (DUT) housing the STM32F407 microcontroller.

Clock Frequency: 24 MHz.
Analysis of implementation for Fault Vulnerability

- We target the usage (not generation) of nonce in all reference implementations.
Analysis of implementation for Fault Vulnerability

- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the `Sample` function along with the nonce is input as an array \(A \) to an XOF function.
We target the usage (not generation) of nonce in all reference implementations.

The seed to the `Sample` function along with the nonce is input as an array A to an XOF function.

The nonce is stored as the last element of the array.
Analysis of implementation for Fault Vulnerability

- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the `Sample` function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.

```
[ ] [ ] [ ] [ ] [ ] ... [ ]
```
Analysis of implementation for Fault Vulnerability

• We target the usage (not generation) of nonce in all reference implementations.
• The seed to the Sample function along with the nonce is input as an array A to an XOF function.
• The nonce is stored as the last element of the array.
Analysis of implementation for Fault Vulnerability

- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the `Sample` function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.

\[
\begin{array}{cccccc}
\text{\color{blue}{\ }} & \ldots & \text{\color{blue}{\ }} & \text{\color{yellow}{\ }}
\end{array}
\]
• We target the usage (not generation) of nonce in all reference implementations.
• The seed to the Sample function along with the nonce is input as an array A to an XOF function.
• The nonce is stored as the last element of the array.

\[
\begin{array}{cccccc}
\text{blue} & \text{blue} & \text{blue} & \text{blue} & \text{…} & \text{red}
\end{array}
\]
Analysis of implementation for Fault Vulnerability

- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.

```
  A  A  A  A  ...  A  A  A  A
```

- For all the call instances to this XOF function, all the elements of the array A are the same except the nonce value.
Analysis of implementation for Fault Vulnerability

- We target the usage (not generation) of nonce in all reference implementations.
- The seed to the Sample function along with the nonce is input as an array A to an XOF function.
- The nonce is stored as the last element of the array.

```plaintext
  A A A A A ... A A A A A N
```

- For all the call instances to this XOF function, all the elements of the array A are the same except the nonce value.
- If this nonce-store to the array is skipped, we are essentially using the same randomness to sample both S and E.
Analysis of implementation for Fault Vulnerability

<table>
<thead>
<tr>
<th>ldr r3,[r5,#28]</th>
<th>movs r1,#1</th>
</tr>
</thead>
<tbody>
<tr>
<td>stmia r4!,{r0,r1,r2,r3}</td>
<td>add r0,sp,#52</td>
</tr>
<tr>
<td>strb.w r7,[r6,#-132]!</td>
<td>strb.w r9,[r6,#32]</td>
</tr>
<tr>
<td>movs r1,#1</td>
<td>movs r2,#33</td>
</tr>
<tr>
<td>mov r0,r6</td>
<td>movs r3,#0</td>
</tr>
</tbody>
</table>

(a) Target operation in NewHope

lsrs r2,r7,#8	movs r1,#128
	ldr r0,[pc,#208]
ldr r3,[pc,#264]	strb.w r7,[sp,#44]
strb.w r2,[sp,#7]	add r1,sp,#12
movw r2,#4097	add r0,sp,#48
mov r1,sp	

(c) Target operation in Frodo

| |
|---|---|
| (d) Target operation in Dilithium |
Experimental Setup

Figure: Description of our EMFI setup
Experimental Setup

Figure: (1) EM Pulse Generator (2) USB-Microscope (3) STM32M4F Discovery Board (DUT) (4) Arduino based Relay Shield (5) Controller Laptop (6) Oscilloscope (7) EM Pulse Injector (8) XYZ Motorized Table
Experimental Setup

Figure: (a) Hand-made probe used for our EMFI setup (b) Probe placed over the DUT
Results on ARM Cortex-M4

- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.

Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.

Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.

- Voltage: 150V-200V, Pulse Width = 12nsec, Rise-Time = 2 nsec.

Faults were synchronized with the target operation using an internally generated trigger.
Results on ARM Cortex-M4

- **Required Fault:** Skip the store instruction to a particular memory location.

- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.

- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.

- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.

 - Voltage: 150V-200V, Pulse Width = 12nsec, Rise-Time = 2nsec.

- Faults were synchronized with the target operation using an internally generated trigger.
Results on ARM Cortex-M4

- **Required Fault:** Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.
- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.
- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.
Results on ARM Cortex-M4

- **Required Fault:** Skip the store instruction to a particular memory location.

- We profiled the ARM chip using a sample load and store program to find a ”sweet spot” to skip the store to a particular memory location.

- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.

- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.

- **Voltage:** 150V-200V, **Pulse Width** = 12nsec, **Rise-Time** = 2 nsec.
Results on ARM Cortex-M4

- **Required Fault**: Skip the store instruction to a particular memory location.
- We profiled the ARM chip using a sample load and store program to find a "sweet spot" to skip the store to a particular memory location.
- Fault sensitive region is the area near the ARM logo of the STM32M4F07 microcontroller.
- Fault repeatability is (almost) 100% at the identified location for a specific set of voltage pulse parameters.
 - Voltage: 150V-200V, Pulse Width = 12nsec, Rise-Time = 2 nsec.
- Faults were synchronized with the target operation using an internally generated trigger.
Fault Complexity

<table>
<thead>
<tr>
<th>Attack Objective</th>
<th>Fault Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEWHOPE</td>
</tr>
<tr>
<td></td>
<td>NEWHOPE512</td>
</tr>
<tr>
<td>Key Recovery</td>
<td>1</td>
</tr>
<tr>
<td>Message Recovery</td>
<td>1</td>
</tr>
</tbody>
</table>

	KYBER	DILITHIUM					
	KYBER512	KYBER768	KYBER1024	Weak	Med.	Rec.	High
Key Recovery	2	3	4	2	3	4	5
Message Recovery	2	3	4	-	-	-	-
Fault Complexity

- Security of Kyber is weakened because the induced fault has removed the hardness from the LWE problem.
Fault Complexity

- Security of Kyber is weakened because the induced fault has removed the hardness from the LWE problem.
- If enough number of signatures corresponding to the same public-private key pair can be observed, then it can lead to a successful key recovery attack on Dilithium.

<table>
<thead>
<tr>
<th>Attack Objective</th>
<th>Fault Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEWHOPE</td>
</tr>
<tr>
<td></td>
<td>NEWHOPE512</td>
</tr>
<tr>
<td>Key Recovery</td>
<td>1</td>
</tr>
<tr>
<td>Message Recovery</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>KYBER512</th>
<th>KYBER768</th>
<th>KYBER1024</th>
<th>Weak</th>
<th>Med.</th>
<th>Rec.</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Recovery</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Message Recovery</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table of Contents

1. Context
2. Lattice based Crypto: Background
3. Fault Vulnerability
4. Key Recovery Attacks
5. Message Recovery Attacks
6. Experimental Validation
7. Countermeasures
8. Conclusion
Countermeasures and Future Directions

- Usage of separate seeds for S and E
- Frodo has updated its specifications as part of its second round submission by using separate seeds for S and E.
- Synchronization of faults with vulnerable operations.
- Study on weakened LWE instances in Kyber and Dilithium.
Table of Contents

1 Context
2 Lattice based Crypto: Background
3 Fault Vulnerability
4 Key Recovery Attacks
5 Message Recovery Attacks
6 Experimental Validation
7 Countermeasures
8 Conclusion
Conclusion

• We identified fault-vulnerabilities due to usage of nonces in multiple LWE-based lattice schemes.

• We proposed key recovery attacks over NewHope, Frodo, Kyber and Dilithium and message recovery attacks over NewHope, Frodo and Kyber KEM schemes.

• Practical Validation of our attack through EMFI on implementations from pqm4 library on the ARM Cortex-M4 microcontroller.

• We hope that nonces either be avoided or be used more carefully in the future.
Thank you!

Any questions?